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Preamble

About this book

Welcome to the first book in Steph Locke’s R Fundamentals series!

This first book introduces the R language and the RStudio coding
environment. It is by no means comprehensive but it represents
the first steps in learning the modern fundamentals.

At the end of this book, you’ll be comfortable with how R works
and deciphering a lot of the old-school code out there.

Already know the basics of R? You’ll be able to skip right onto the
next book in this series, Data Manipulation in R1.

Working with R by Stephanie Locke is licensed under a Cre-
ative Commons Attribution-NonCommercial-ShareAlike 4.0
International License.

What you need to already know

This book assumes no prior knowledge of programming, or R. A
basic knowledge of mathematics will come in handy, but isn’t re-

1http://geni.us/datamanipulationinr

 

 

Figure 1
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quired. You will need a good understanding of the use of calculators
or Excel for mathematics.

You will need the required access to be able to install (or get in-
stalled) R, RStudio, and, if on Windows, Rtools. You can code
online at r-fiddle.org2 but this might be unreliable.

• Install R from r-project.org3

• Install RStudio from rstudio.com4

If you’re on Windows, it’s also great if you can install Rtools5. This
gives you the tools to install packages from GitHub later on down
the line.

Steph Locke

I am a Microsoft Data Platform MVP with over a decade of busi-
ness intelligence and data science experience.

Having worked in a variety of industries (including finance, utilities,
insurance, and cyber-security,) I’ve tackled a wide range of business
challenges with data. I was awarded the MVP Data Platform award
from Microsoft, as a result of organising training and sharing my
knowledge with the technical community.

I have a broad background in the Microsoft Data Platform and
Azure, but I’m equally conversant with open source tools; from
databases like MySQL and PostgreSQL, to analytical languages
like R and Python.

Follow me on Twitter via @SteffLocke

Locke Data

I founded Locke Data, an education focused consultancy, to help
people get the most out of their data. Locke Data aims to help
organisations gain the necessary skills and experience needed to

2http://www.r-fiddle.org/
3https://cloud.r-project.org/
4https://www.rstudio.com/products/rstudio/download/#download
5http://cran.r-project.org/bin/windows/Rtools/

http://www.r-fiddle.org/
https://cloud.r-project.org/
https://www.rstudio.com/products/rstudio/download/#download
http://cran.r-project.org/bin/windows/Rtools/
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build a successful data science capability, while supporting them
on their journey to better data science.

Find out more about Locke Data at itsalocke.com6.

Acknowledgements

This book could not be possible without the skills of Oz Locke. My
husband he may be, but most importantly he’s a fantastic editor
and graphic designer.

As well as Oz editing the book and helping me make it look awe-
some, plenty of people provided vital feedback on the book:

• Erin Grand
• Eric Nantz
• Edmund Poillion
• Duncan Greaves
• Robert Fornal
• Verena Haunschmid
• Donia Robinson
• Paula Jennings
• Nico Botes
• Edafe Onerhime

Any errors are my own but Oz and my feedback group have helped
me make substantially less of them. Thank you!

Conventions

Throughout this book various conventions will be used.

In terms of basic formatting:

• This is standard text.
• This is code or a symbol
• Keyboard keys will be shown like Ctrl + + F ctrl + shift

+ F
• This is the first time I mention something important

6https://itsalocke.com/company/aboutus/

https://itsalocke.com/company/aboutus/
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This is a book about coding, so expect code blocks. Code blocks
will typically look like this:

"this is a code block"

Directly underneath it, normally starting with two hash symbols
(##) is the result of the code executing.

## [1] "this is a code block"

There will also be callouts throughout the book. Some are for
information, some expect you to do things.

 

 

Anything written here should be read carefully before pro-
ceeding.

 

 

This is a tip relating to what I’ve just said.

 

 

This is kind of like a tip but is for when you’re getting into
trouble and need help.

 

 

This is something I recommend you do as you’re reading.

 

 

This let’s you know that something I mention briefly will be
followed up on later, whether in this book or a later one.

If you’re reading the book in print format, there are often blank
pages between chapters – use these to keep notes! The book is to
help you learn, not stay pristine.

Feedback

Please let me and others know what you thought of the book by
leaving a review on Amazon!

Reviews are vital for me as a writer since it provides me with extra
insight that I can apply to future books. Reviews are vital to other
people as it gives insight into whether the book is right for them.
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If you want to provide feedback outside of the review mechanism
for things like errata, suggested future titles etc. you can. Use
bit.ly/ldbookfeedback7 to provide us with information.8

7http://bit.ly/ldbookfeedback
8You’ll get a sticker if you do!

http://bit.ly/ldbookfeedback
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Chapter 1

About R

R is an open source language released in 2001 that’s ideal for data
wrangling1 and data science2. It has connectors to pretty every
much every data source under the sun, allows you wrangle data
like nobody’s business, build pretty much every type of model ever
thought up, and visualise it in all the niftiest ways.3 R really is a
tremendous language to add to your tool belt.

1.1 History

R has a long lineage - it was written to re-implement the language
S4. S was a commercial language written in the mid-1970s to enable
statistical and graphical processing. Indeed much code written in
S can still run today, a phenomenal feat! If you ever look at R and
wonder “Why on Earth does it work like that?”, the usual answer
is “Because S”.5

The previous paragraph might lead you to ponder why R is in
use today and why the popularity is growing. R has a vibrant

1https://en.wikipedia.org/wiki/Data_wrangling
2https://en.wikipedia.org/wiki/Data_science
3These superlatives are not disingenuous, R really is that broad and amaz-

ing.
4https://en.wikipedia.org/wiki/S_(programming_language)
5If you’d like to find out about the assignment operators’ history (<- and

->) and many of the other quirks of R, the article Rbitrary http://ironholds.
org/projects/rbitrary/ is fantastic and highly irreverent reading.
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ecosystem that enables people to extend, enhance, and replace any
part of it. There are many paradigms in R to facilitate object-
oriented programming, functional programming, and more. If you
can write something in C++, FORTRAN6, Python, or JavaScript–
and of course, R!–you can write extensions for R.

There are currently more than eleven thousand extensions (referred
to as packages) to R in the core ecosystem (which is a fancy word
for the collected bits and pieces of R!) 7 and two and a half thousand
packages in the genomics ecosystem 8.

 

 

We’re also seeing emerging ecosystems and paradigms within
CRAN. The tidyverse9 is one such ecosystem, focussed pri-
marily on analysing tabular data, and it will be used in future
works extensively.

1.2 CRAN

The core ecosystem is CRAN, the Comprehensive R Archive Net-
work. CRAN10 is maintained by some great people who put in
place a large number of quality gates that an R package must ad-
here to in order to be made widely available. They then host these
packages and do great things like daily re-runs of all package tests
to ensure packages are still working. CRAN is the default source
of packages for most R users.

If you use RStudio, you’ll use a mirror of CRAN hosted by RStu-
dio. There are a number of these mirrors scattered over the globe
to help reduce the load on the central servers. You can use another
one of these mirrors, or even set-up your own internal CRAN.

1.3 Key points to know about R

• R works in-memory which means that the processing is fast
but the amount of data you can process is limited to how

6Yes, it still exists and yes, R still relies on it for some key algorithms
7CRAN https://www.r-project.org/
8BioConductor https://www.bioconductor.org/

10https://cran.r-project.org

https://www.r-project.org/
https://www.bioconductor.org/
https://cran.r-project.org
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much RAM your data takes up and how much your compu-
tations will require.

• R is not multi-threaded by default, it works on a single CPU
core. Making use of more than one of your cores to spread
the load requires additional packages and often additional
coding.

• R is quirky! In some ways, R is a lot like other common
programming languages, which can make it pretty easy to
pick up. However, because R is still designed to be compatible
with S, it’s actually pretty darn old and as a result, really odd
in places.

• Coding R will give you the typical gotcha’s, and add another:
case sensitivity. R is (un)fortunately a language where “Red”
and “red” are different and this also extends to variable and
function names (which we’ll discuss later.) As a consequence,
the most common errors you’ll find when writing code in R
are:

– Incorrectly placed or missing commas
– Incorrectly placed or missing brackets
– Incorrectly placed or missing operators
– Incorrect case used when typing

• With so many packages available to extend R, the answer to
“how do I write this?” is usually “there’s a package for that”.

 

 

We’ll look at finding packages later in this book.

1.4 Summary

R is a great language for doing data analysis, data science, and
more. It has its quirks but the community around it is huge and is
making R easier to adopt every day.





Chapter 2

Why use R?

R as a programming language is brilliant at its core competencies –
statistics and data visualisation. It’s also a great “glue” language,
by which I mean that you can use it to perform computations in
many different languages and combine the results smoothly. As a
result, R enables you to be an effective data wrangler, data scientist,
and/or data visualisation practitioner.

The following section will show some uses that exemplify how little
is required to do things in R, that in other languages or tools can
take a substantial amount of time.

 

 

These are illustrative only. Don’t worry if they don’t make
much sense. Writing code like these examples will be covered
in later books.

2.1 Data wrangling

Here’s a common issue I’ve had in the past: working with data from
multiple sources, that should usually conform to a template, but
don’t. You end up with a whole stack of files that don’t quite match
the template, and as a result getting all this data read, combined,
and then output somewhere else is often an incredibly difficult task.

This snippet of R code performs the following steps:

19
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1. Make functionality from the tidyverse available
2. Identify files needing to be read and combined
3. Read each file individually, whilst applying a column type

enforcement
4. Combine the results

Combining the results involves matching the columns by name. It
will create new columns when it finds additional columns in some
of the data and fill in the data. When columns are missing from a
dataset it will put NAs in those column for that data.

library(tidyverse)

# Change "data" to where your files are.
# Remove the col_types bit if your columns
# are fairly type safe.
list.files("data", full.names = TRUE) %>%
map_df(read_csv, col_types = cols("c")) %>%
bind_rows() %>%
nrow()

## [1] 105

The example is fairly simple in that it’s reading in CSVs from
a single directory. The great thing is you can consume data from
multiple directories or locations by changing how you identify what
files you want to process and you can process other formats simply
by changing to the relevant read function for that file type.

2.2 Data science

 

 

This section is for people with an interest in using R for Data
Science. As such it does presume some prior knowledge of
Data Science in general. If this section isn’t for you, please
skip ahead to the next section.

When building a predictive model you typically need to prepare
your data, sample it, scale numeric values, perform feature reduc-
tion, and build a model. In academic settings the model is the end
goal but in an industry setting we often need to put the model into
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an operational system. This means any transformations need to be
consistently applied to new data before the model can be used to
make a prediction.

This can be pretty awkward to write. If you want to scale numeric
variables, you need to keep some sort of record of the mean and
standard deviation in the case of a z-score1 or the minimum and
maximum values if you wanted to do a minmax score2. When you
go on to predict values for new data you need to be able to use the
same values from your original scaling process otherwise you get
the wrong results. How do you then store and apply these values
to new data? Probably with a lot of code and manual labour!

Having many steps to take new data, scale values, remove the extra
features and get a score means there’s many things that can go
wrong or get missed. One of the best things you can do is to avoid
multiple steps and do things in one go. You need something that
can be applied to new data that does all the steps in one.

It turns out, there’s an R package for that! You can use function-
ality from the package caret3 to add data transformation steps to
your model development. It will then keep these steps as part of the
model and whenever you use the model to make predictions it will
first process the data based on the parameters and transformations
used on the training data.

This snippet of R code performs the following steps:

1. Make functionality from the caret package available
2. Split data into training and test samples with the outcome

column separate
3. Build a linear regression model on data scaled using z-scores

and turned into principal components
4. Apply the transformations and then our linear model to get

predictions for test data

library(caret)

training_data <- mtcars[1:20,-2]
training_outcome <- mtcars[1:20,2]

1http://stattrek.com/statistics/dictionary.aspx?definition=z%
20score

2https://en.wikipedia.org/wiki/Feature_scaling#Rescaling
3https://topepo.github.io/caret/

http://stattrek.com/statistics/dictionary.aspx?definition=z%20score
http://stattrek.com/statistics/dictionary.aspx?definition=z%20score
https://en.wikipedia.org/wiki/Feature_scaling#Rescaling
https://topepo.github.io/caret/
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test_data <- mtcars[21:32,-2]
test_outcome <- mtcars[21:32,2]

model <- train(training_data, training_outcome,
method="lm",
preProcess = c("scale","center","pca"))

predictions <- predict(model, test_data)

Using caret means you can end up with a single line of code to
take new data and get an output – making it incredibly easy to use
in an operational scenario.

2.3 Data visualisation

Data visualisation is an area where R makes it especially difficult
to choose just a single example. Instead of showing the many fancy
or interactive visualisations you can do in R, I’m instead going to
show a part of the workflow.

You’ll often need to make a chart, and then make that chart for
a lot of different datasets. These could be datasets for different
customers, samples, or time slices.

You can make a chart in R using the package ggplot24 to build a
chart of all data.

I’m going to use Dino the Datasaurus and his Data Dozen buddies5

as example data here. Dino and his friends have the same summary
statistics but very different data distributions. They show why
visualising data is so incredibly vital.

 

 

The other Dozen were generated using simulated annealing
and the process is described in the paper Same Stats, Dif-
ferent Graphs: Generating Datasets with Varied Appearance
and Identical Statistics through Simulated Annealing by Justin
Matejka and George Fitzmaurice. autodeskresearch.com6

4http://ggplot2.tidyverse.org
5The original Datasaurus was created by Alberto Cairo and can be found

on thefunctionalart.com

http://ggplot2.tidyverse.org
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In the paper, Justin and George simulate a variety of datasets
that have the same summary statistics to the Datasaurus but
have very different distributions.

library(ggplot2)
library(datasauRus)

myPlot<- ggplot(datasaurus_dozen, aes(x,y)) +
geom_point()

myPlot
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You might just want to make it easy to see Dino and his friends.
You can do this with a small multiples7 chart, where you get a
small chart per group.

myPlot + facet_wrap(~dataset)

7https://en.wikipedia.org/wiki/Small_multiple

https://en.wikipedia.org/wiki/Small_multiple
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Instead of many small charts in one file, you might want to pro-
duce a separate chart for for Dino and each of his buddies in a
bigger piece of analysis. In a real world setting, you might want to
loop through customers and produce a chart per customer. Alter-
natively, you might want to make a chart object and re-use it for
many different slices of data in a big piece of analysis.

We made and stored a chart object (myPlot) and we can actually
pass it some data that will override the data currently linked to
the chart. This enables to re-use the chart for different datasets.

For instance, another dataset in the datasauRus package is a set
that illustrates the Simpson’s Paradox8 It has the same three
columns (x, y, and dataset) so it can be used with myPlot.

myPlot %+% simpsons_paradox

8Simpson’s Paradox is the phenomenon where high level statistics provide
one conclusion but evaluating sub-groups within the data provides a very dif-
ferent conclusion. More information on Simpson’s paradox can be found at
vudlab.com/simpsons .
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2.4 Summary

R is an incredibly powerful tool. It is useful in range of situations
and is well worth learning. Reading this series of books will help
you learn to be able to do the sorts of things outlined in this section.





Chapter 3

Using RStudio

 

 

If you don’t already have it, you should install R and RStu-
dio1.

If you’re on Windows, it’s also great if you can install Rtools2.
This gives you the tools to install packages from GitHub later
on down the line.

RStudio3 is a coding interface to R that makes it easier for you to
be productive.4 I’m devoting substantial amounts of this book to
your working environment as you can use it to make learning and
coding R much easier by taking the time to understand it.

The interface will be split up into a top menu and then four panes,
although only three may be visible when you first start RStudio.

3.1 The console

The (bottom) left hand section is the console. This is where you
can execute R code directly.

To use the console you type some code alongside the > and hit
Enter for the code to be executed. The result will then appear

3http://rstudio.com
4If coding interfaces were game modes, RStudio is Easy mode, Visual Studio

is Normal, R-GUI is Hard, vim is Insane, and Emacs is Legendary.

27
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Figure 3.1

underneath your line of code.

Watch a video of using the console at youtu.be/2hg1Qg7uLwU5.

 

 

Errors, warnings, and messages will also appear in the console.
We’ll discuss what these are later in the book

 

 

Use the console to add two numbers together.

If the code you entered wasn’t a complete statement e.g. 1 + 2 +,
when you hit Enter , you’ll get a new line only the > will now be
a +. This indicates the code you’re writing is a continuation of the
previous line. R will allow you to continue building up a complete
chunk of code this way. It’ll run all the lines you entered as one
block once it’s been completed.

If you want to clean your console and start afresh, hit Ctrl + L
Ctrl + L to remove whatever has been executed in the console
this session.

You can use your up and down arrow keys to navigate through
previous code you’ve written and executed.

5https://youtu.be/2hg1Qg7uLwU

https://youtu.be/2hg1Qg7uLwU
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If you commit one of the most common coding errors (incor-
rect amounts or places of brackets and commas) you might
end up with an incomplete line and basically lock your con-
sole into having the + symbol at the beginning of each line.
If you find yourself stuck with commands just writing and
writing and never executing, hit the Esc key to cancel the
code and get back to the standard cursor.

3.2 Scripts

RStudio allows you to create and work with files containing code.
These files give you a way to store and manage your code.

The most common file types you might use are R files (.R) and
rmarkdown files (.Rmd).

 

 

rmarkdown files are for generating documents with text and
R code interleaved (like this book!) They’ll be covered in a
future book. If you want to get going, checkout the rmark-
down6 site.

You can create one of these files by going to File > New > R Script,
the New File button, or with the hotkey combo7 of Ctrl + Shift +
N Ctrl + + N .

Watch a video of how to do this at youtu.be/rWHV2VlQo2w8.

In an R script you can type code and execute it by hitting Ctrl
+ Ctrl + Enter9, or selecting the code to run and hitting the
Run button.

You can execute all the code in a script by hitting Ctrl + +

Ctrl + Shift + Enter or hitting the Source button.

 

 

1. Open a new R script
2. Write 10*5 in it and execute the code

7I’m a big fan of hotkeys!
8https://youtu.be/rWHV2VlQo2w
9This hotkey is really nifty as it’ll find the start and end of a block of code

and send it all to the console to be executed.

https://youtu.be/rWHV2VlQo2w
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3.3 Code completion

Whilst writing scripts or typing in our console, we can get help and
be more productive by using code completion. Code completion
will pick up from what we’ve typed so far and provide a navigable
list of suggestions.

As we navigate through the list, it’ll provide help text where pos-
sible and then it will complete the code we were typing.

• You access the code completion by hitting Tab whilst
typing

• Once it’s up you can keep typing to refine the list
• Your arrow keys allow you to navigate the list
• Hit Esc Esc to back out of the completion capability
• Hit Tab to accept whatever value in the list is currently

highlighted

Watch a video of how to do this at youtu.be/pGOF4gTyeXA.

 

 

1. On a new line of your script, type a and activate your
code completion. Browse the list then cancel out of the
list

2. Overwrite the a with an A and go back into the code
completion. Do you get the same list? What’s different
and why?

3.4 Projects

So far you’ve seen R as a scratch-pad (via the console) and for
making an isolated script, but a lot of the time we have to put
data, multiple scripts, documentation and more into a project.

An RStudio project is a folder with an extra file. This file can be
used to open RStudio, with everything laid out like it was before
you closed the project. It can store preferences to allow projects to
vary from the way you normally do things.10

10Like converting tabs to spaces and the number of spaces characters it should
replace with.

youtu.be/pGOF4gTyeXA
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At this point in your R coding career, keeping everything
where you left off is great. Later on, and especially if you
work in anything where reproducibility is valued, you can go
to Tools > Project Options … and set the .Rdata fields to
“no” so that nothing loads up into memory when you load
the project.

You can, and should, create a new R project when embarking on a
new area of work. To create a project go to File > New Project.

This will popup a dialogue that gives you the option to create a
brand new project directory, create one from some existing direc-
tory you might already have, or create one with the content of
a project in your source control system (we’ll talk about source
control in a later book.)

Most commonly, you’ll want to create a new directory project.
Once selected it’ll then give you the option to create an empty
project, a Shiny project (a feature for creating amazing dynamic re-
ports,) or an R package. You’ll normally select the empty projects.
Once an option is selected, provide a name and where the project
should go.

Watch a video of how to do this at youtu.be/etkSsF6r2iU11.

 

 

Working with source control, shiny, and creating R packages
are all in later books.

You can navigate to projects using the project option in the top
right corner or in the File section.

 

 

Create a new project to store the answers to exercises and
any code you try out during this book. You don’t have to
save the script you were working on before this (unless you
want to!)

11https://youtu.be/etkSsF6r2iU

https://youtu.be/etkSsF6r2iU
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3.5 Summary

RStudio is a fantastic environment for learning R and writing R
code going forward.

Using code completion can be a great help in finding what to write
and how to write it.

Other areas of the RStudio interface will be introduced as we go
forward but taking the time to get to know the environment now
will help you be more productive in future.



Chapter 4

Useful resources

Our coding environment, RStudio, is a great help to us. The code
completion makes it easy to find things kind of related to what
you’re typing but sometimes you need to do a bit more digging or
read a bit more than the snippet of help in the code completion
window.

4.1 The built-in help

R has pretty great built-in help. You might understand some of it
but there’s usually lots of it and most help files give you examples
to run.

The help files are accessible in the bottom right-hand corner of
RStudio.

If you want to see some of the built-in help whilst using code com-
pletion, you can hit F1. Similarly, you can select a word in script
and hit F1 to go to the help.

If you don’t have something specific to select from you can go to
the help window and use the search facility. If there’s a function
that matches what you’re typing that’ll be short-listed, and you
can select it and hit Enter. Alternatively if you don’t get a
match, hitting Enter once you’ve finished typing will enact a
fuzzier search.
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Figure 4.1

Another way you can get help is by looking at the index of functions
available for a given package. You go to the Packages tab and click
on the package you’re interested in. This loads up the index for
that package and you can then read through what’s available.

The help window has some handy navigation features to make it
easier to use:

• In-file search bar for finding words in a help file
• Navigation arrows for moving between files like Back and

Forwards on a web-browser
• The New Window button creates a popup with the file so

that you make it bigger or put it onto another monitor



4.2. ONLINE 35

4.2 Online

R is a great community that has produced many resources.

• You can search for previous R questions or ask new ones on
the ubiquitous Stack Overflow1

• If you’re tweeting about R, use the hash-tag #rstats.
– If you want to see what’s happening in the R world, I

recommend you follow Mara Averick (@dataandme)2

– If you want to ask a question, you can also tweet me
Steph Locke (@stefflocke)3

• RStudio provide a trove of fantastic cheatsheets4 – including
one for being super-productive in RStudio. These are great
to download and/or print in order to keep handy as you’re
learning

• Documentation for R packages is available on CRAN5 but
there are a number of online sites that try to improve the
experience, including rdrr.io6 and rdocumentation.org7

• R-bloggers8 is a site consolidating blogs from more than 500
people. It’s a great way to find how-to’s

• R Weekly9 is a curated newsletter of key goings on, new pack-
ages, and blog posts from the R world

• DataCamp10 is a nifty online learning platform for R, Python,
and more.

Finally, search is a wonderful thing and you should totally be
searching for answers to your questions. Unfortunately, when
you’re first getting started with R, your Google-bubble11 won’t be
very good at returning the results you’re hoping for. To improve
results, make sure to prefix searches with “R” and you can also
use a customised version of Google called rseek.org12. Rseek
specifically searches the sorts of sites mentioned above which can

1http://stackoverflow.com
2http://twitter.com/dataandme
3http://twitter.com/stefflocke
4http://www.rstudio.com/resources/cheatsheets/
5http://cran.r-project.org
6http://rdrr.io
7http://rdocumentation.org
8http://r-bloggers.com
9https://rweekly.org/

10https://www.datacamp.com/
11Google’s tailoring of your results
12http://rseek.org

http://stackoverflow.com
http://twitter.com/dataandme
http://twitter.com/stefflocke
http://www.rstudio.com/resources/cheatsheets/
http://cran.r-project.org
http://rdrr.io
http://rdocumentation.org
http://r-bloggers.com
https://rweekly.org/
https://www.datacamp.com/
http://rseek.org
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be limiting so you trade off breadth for initial accuracy.

4.3 Books

Hopefully this book and it’s follow ups will be helpful for learning
R! However, the aim of producing a new book every two to three
months might be a bit slow for your liking so I’ve included some
great books13 you can also turn to for learning R.

Additionally, understanding R won’t necessarily make you a great
data wrangler, data visualiser, or data scientist, or even a great
coder so I’ve put included some recommended books on topics out-
side of R.

4.3.1 R

• R for Data Science: Visualize, Model, Transform,
Tidy, and Import Data An end-to-end introduction to R
geni.us/rfords14

• Text Mining with R: A Tidy Approach Learn how to
do Natural Language Processing in R geni.us/tidytext15

• ggplot2: Elegant Graphics for Data Analysis Learn the
ins and outs of one of the most common graphical packages
for R geni.us/ggplot216

4.3.2 Data wrangling

• SQL Cookbook Helps you with SQL skills and be-
ing able to translate across different database dialects
geni.us/sqlcookbook17

• Data Manipulation in R Book 2 in this series focuses on
getting and analysing data in R geni.us/datamanipulationinr18

13All the links are links that will ideally take you to the most relevant Amazon
site. I apologise if you’re reading this and I was unable to to save you the hassle
of digging out the book online. Thank you for reading this one though!

14http://geni.us/rfords
15http://geni.us/tidytext
16http://geni.us/ggplot2
17http://geni.us/sqlcookbook
18http://geni.us/datamanipulationinr

http://geni.us/rfords
http://geni.us/tidytext
http://geni.us/ggplot2
http://geni.us/sqlcookbook
http://geni.us/datamanipulationinr
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4.3.3 Data visualisation

I have many of these books, but others are recommendations from
others and are now on my list to buy!

• Show me the numbers geni.us/showmethenumbers19

• The Visual Display of Quantitative Information
geni.us/visdispquantinfo20

• Information is Beautiful geni.us/infoisbeautiful21

• The Truthful Art: Data, Charts, and Maps for Com-
munication geni.us/truthfulart22

• Data Visualisation geni.us/datavisualisation23

• Storytelling with Data geni.us/storytellingwithdata24

4.3.4 Data science

• Naked Statistics: Stripping the Dread from the Data
An engaging introduction into some statistical concepts
geni.us/nakedstatistics25

• Statistics in Plain English A primer on statistics
geni.us/statsplainenglish26

• Data Science for Business A non-technical introduction
to data science and some of the maths geni.us/dsforbiz27

• Forecasting: principles and practice Learn all about
forecasting methods (code is in R too!) geni.us/forecasting28

• Regression Modeling Strategies: With Applications
to Linear Models, Logistic and Ordinal Regression,
and Survival Analysis geni.us/regression29

• Artificial Intelligence for Humans, Volume 1: Funda-
mental Algorithms This and subsequent volumes are use-
ful for getting to grips with some of the fancier bits of data

19http://geni.us/showmethenumbers
20http://geni.us/visdispquantinfo
21http://geni.us/infoisbeautiful
22http://geni.us/truthfulart
23http://geni.us/datavisualisation
24http://geni.us/storytellingwithdata
25http://geni.us/nakedstatistics
26http://geni.us/statsplainenglish
27http://geni.us/dsforbiz
28http://geni.us/forecasting
29http://geni.us/regression

http://geni.us/showmethenumbers
http://geni.us/visdispquantinfo
http://geni.us/infoisbeautiful
http://geni.us/truthfulart
http://geni.us/datavisualisation
http://geni.us/storytellingwithdata
http://geni.us/nakedstatistics
http://geni.us/statsplainenglish
http://geni.us/dsforbiz
http://geni.us/forecasting
http://geni.us/regression
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science happening at the moment geni.us/aiforhumans30

4.3.5 Miscellaneous

• The Checklist Manifesto: How to Get Things Right
Learning about how you can be effective is important to be-
coming effective geni.us/checkman31

• The Phoenix Project A novel on a painful transition to
agility and adding value geni.us/phoenixproj32

• The Mythical Man-Month: Essays on Software Engi-
neering Words of wisdom that are still very applicable today
for working on data science projects geni.us/mythicalman33

4.4 In-person

The R community, as well as doing a huge amount of tweeting,
actually gets together in-person quite a bit.

If you’d like to go a meetup, then you should check out this meetup
directory34. As well as these happenings, you can also check out
R-Ladies35 events.

We have a growing number of conferences and you can find ones to
attend via the conferences directory36.

4.5 Summary

There are so many resources available to people learning R. The
community is awesome and you can get involved in any medium
that suits you. If you’re looking for something specific and finding it
difficult to hunt down a suitable resource, tweet me (@SteffLocke)!

30http://geni.us/aiforhumans
31http://geni.us/checkman
32http://geni.us/phoenixproj
33http://geni.us/mythicalman
34http://jumpingrivers.github.io/meetingsR
35https://rladies.org/
36https://jumpingrivers.github.io/meetingsR/events.html

http://geni.us/aiforhumans
http://geni.us/checkman
http://geni.us/phoenixproj
http://geni.us/mythicalman
http://jumpingrivers.github.io/meetingsR
https://rladies.org/
https://jumpingrivers.github.io/meetingsR/events.html
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Chapter 5

R data types

 

 

I recommend you add a new file to your R project, save it
with a file name referencing this section and try out the code.
Add your answers to the exercises and leave yourself some
notes by first putting # sign and then typing the note after
it. There’s nothing like practice and taking notes for helping
you retain info!

When we think of different bits of data, some of it might be num-
bers, text, dates, and more. R has its own set of these data types.

Before we get into the data types, let’s see how we can get R to
tell us what something is.

R uses functions (basically, an inbuilt bit of code that you can
call on to do things with, optionally passing it some data to work
with) to take some inputs and get an output. The function that
we can pass a value to, and get what data type it is as the output,
is the class() function.

class(1)
class(1.1)
class("1")

## [1] "numeric"
## [1] "numeric"

41
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## [1] "character"

 

 

You can use this class() function if you’re ever unsure what
data type something is. This is great for when you’re getting
unexpected results!

5.1 Numbers

 

 

I gloss over a lot of the nuance here as most people will not
need it. If you want some of the nuance, read the footnotes.

Numbers are split into a few different types:

• integers are whole numbers like 1 or 421

• numerics are numbers that have a decimal portion associ-
ated with them like 1.0 or 3.1332

• complex numbers are numbers that make use of the imag-
inary number i like 4i3

5.1.1 Converting to numbers

The functions as.numeric() and as.integer() allow you to con-
vert something stored as text into a number.

These functions will give you some red text as a warning if you
attempt to convert something to a number that can’t be safely
converted. It will still attempt to perform the conversion, but re-
turn missings (NA) instead of actual values.

1If you want to guarantee a number is an integer, you can suffix the value
with a L e.g. 42L. If you want to read more about this, check out the R manual
at http://cran.r-project.org

2Numerics in R are floating point numbers - this mean every decimal gets
stored usually with a large amount of extra decimal places. This can lead
to some unusual results when comparing two decimal values and we’ll see an
example later.

3i is the square root of -1, which is an impossible number since any nega-
tive multiplied by itself would result in a positive. Descartes coined the term
“imaginary” in reference to this number as it’s a consistent value in formulae
but doesn’t exist in the real world.

http://cran.r-project.org
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as.numeric(1)
as.numeric(1.1)
as.numeric("1")
as.numeric("r")

## Warning: NAs introduced by coercion

as.integer(1)
as.integer(1.1)
as.integer("1")
as.integer("r")

## Warning: NAs introduced by coercion

## [1] 1
## [1] 1.1
## [1] 1
## [1] NA
## [1] 1
## [1] 1
## [1] 1
## [1] NA

5.1.2 Checking numbers

You can write checks to see if something is numeric, or an integer,
with is.numeric() or is.integer().

is.numeric(1)
is.numeric("1")

is.integer(1)
is.integer(1L) # There's a footnote on this
is.integer("1")

## [1] TRUE
## [1] FALSE
## [1] FALSE
## [1] TRUE
## [1] FALSE
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We could also use class() here and inspect the result.4 I’m going
to use it here to test the results of a conversion to show you how you
can nest functions, which means that the inner-most function gets
evaluated and the results are used by the next outer-most function,
and so on.

class(numeric("1"))
class(integer("1"))

## [1] "numeric"
## [1] "integer"

5.1.3 Special numbers

As well as i to denote imaginary numbers, there are some addi-
tional symbols you might encounter or want to use.

• pi = 3.1415927
• Inf represents positive infinity. You’ll often see this if you

divide a positive number by zero
• -Inf represents negative infinity. You’ll often see this if you

divide a negative number by zero
• NaN is what happens when you really screw up a calculation

and do something like 0/0. It means the result is not a num-
ber!

5.2 Text

Text, also known as strings, is split up into two core types:

• characters are text as we typically think of it like “red”
• factors (and the subtype ordered factors) are a text type

where the number of unique values is constrained e.g. the
values are selected from a dropdown. Factors work by stor-
ing numbers that correspond to our values and then printing

4You might recall that class(1) had the result of “numeric” - R was not
by default considering 1 as an integer for the purpose of the class() function.
This is a property of R’s evaluation of values and you can force it to consider
a value to be an integer by suffixing it with an L, so class(1L) evaluates to
“integer”.
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these values. This is much more space efficient when the
number of unique values is low.5

 

 

Factors will be covered at length in a later book. The rest of
this book will work with characters.

In R, you can’t just type some text as it will be construed as an
object or function name. To delimit a string you can use speech
marks (") or apostrophes (') at the beginning and end of it to show
where it starts and ends. These are the text delimiters in R.

Note you can’t use the two delimiters interchangeably e.g. ”red’,
but you can use them together to enable you have speech marks
or apostrophes inside a string e.g. 'They said "Read this"' or
"It's mine now".

If you need to have both inside a string you can escape the ones
on the inside of a string to say they don’t count as text delimiters.
To escape a delimiter you can use a backslash(\) e.g. "They said
\"Read this\"".

'They said "Read this"'
"It's mine now"
"They said \"Read this\""

## [1] "They said \"Read this\""
## [1] "It's mine now"
## [1] "They said \"Read this\""

 

 

Beware the copy & pasting (C&Ping) of code that isn’t in
“pre-formatted” mode. The aesthetically pleasing changing
of speech marks or apostrophes at the beginning and end of
some text will screw up your code. If you’re getting weird
errors around unexpected symbols or your console queuing
up after C&Ping, replace all the speech marks and see if that
fixes things. This can also happen with some types of space
characters too.

5In other programming languages this is often called an enumerated
string
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5.2.1 Converting to strings

Converting to characters and factors is the same as working with
numbers. You swap “numeric” for “character” or “factor” and
you’re done!

You’ll see a difference in how these values get displayed. Basic char-
acters are boring - they just print out. Factors look very different.
There’s no speech marks and there’s this Levels bit. The Levels
tells you what the unique values in the lookup for this datatype
are.

as.character(1)
as.character("1 a")

as.factor(1)
as.factor("1 a")

## [1] "1"
## [1] "1 a"
## [1] 1
## Levels: 1
## [1] 1 a
## Levels: 1 a

5.2.2 Checking strings

We can check text in a similar way to checking numbers.

is.character(1)
is.character("1")

is.factor(1)
is.factor("1")
is.factor(as.factor("1"))

## [1] FALSE
## [1] TRUE
## [1] FALSE
## [1] FALSE
## [1] TRUE
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Additionally, the class() function returns the datatype.

class("1")
class(as.factor("1"))

## [1] "character"
## [1] "factor"

5.3 Logical values

Whilst we’ve been testing our datatypes, we’ve created a lot of
logical or boolean values. Boolean values are TRUE and FALSE. R
is case-sensitive so these have to be typed upper-case, otherwise it
means something different.

 

 

You can think of the boolean values as 1 and 0, but using
these in your code can result in changing your datatype to a
number. If things aren’t working as expected make sure to
check types as you go along.

5.3.1 Converting to logicals

# All these return a TRUE
TRUE
as.logical(1)
as.logical("TRUE")
as.logical("true")

# All these return a FALSE
FALSE
as.logical(0)
as.logical("FALSE")
as.logical("false")

## [1] TRUE
## [1] TRUE
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## [1] TRUE
## [1] TRUE
## [1] FALSE
## [1] FALSE
## [1] FALSE
## [1] FALSE

5.3.2 Checking logicals

There is support for checking if something is of datatype logical.

is.logical(1)
is.logical(TRUE)
is.logical("TRUE")
class(TRUE)

## [1] FALSE
## [1] TRUE
## [1] FALSE
## [1] "logical"

5.4 Dates

 

 

Dates are one of the hardest parts of programming! This is a
very brief introduction to dates and they will not be covered
further in this book. Expect a later book to dedicate a lot of
page space to date handling.

Dates in R split into:

• dates do not have any time component
• POSIX date-times
• POSIXct is an integer based storage method
• POSIXlt is a component based storage method

You might be looking at the two POSIX times and thinking to
yourself “ZOMG how am I meant to choose?”. Most people use the
POSIXct format6, which is the default for many of R’s functions.

6According to my unscientific twitter poll at http://twitter.com/

http://twitter.com/SteffLocke/status/895198115594153988
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5.4.1 Converting to dates

You can convert to date-time’s with as.Date(),as.POSIXct(), and
as.POSIXlt(). Ideally, you’ll provide a string with the date(time)
in ISO8601 formats e.g. “YYYY-MM-DD hh:ss”. If not, you’ll
want to read up on the date-time format specifications7 for R.

as.Date("2017-12-31")
as.POSIXct("2017-12-31")
as.POSIXlt("2017-12-31")

as.Date("2017-12-31 23:59")
as.POSIXct("2017-12-31 23:59")
as.POSIXlt("2017-12-31 23:59")

## [1] "2017-12-31"
## [1] "2017-12-31 GMT"
## [1] "2017-12-31 GMT"
## [1] "2017-12-31"
## [1] "2017-12-31 23:59:00 GMT"
## [1] "2017-12-31 23:59:00 GMT"

Note that it’s assuming a time zone based on my device as I’ve not
provided a default. It’s prudent to set the time zone in order to
avoid the results of your code changing based on where the code is
run or when8.

as.POSIXct("2017-12-31 23:59", tz = "UTC")

## [1] "2017-12-31 23:59:00 UTC"

5.4.2 Checking dates

Unfortunately, R does not provide functions for checking whether
the class of something is a date-time type without extending its
functionality. We have to use class() as a consequence.

SteffLocke/status/895198115594153988
7http://stat.ethz.ch/R-manual/R-devel/library/base/html/strptime.

html
8Daylight savings time can catch you out

http://twitter.com/SteffLocke/status/895198115594153988
http://twitter.com/SteffLocke/status/895198115594153988
http://twitter.com/SteffLocke/status/895198115594153988
http://twitter.com/SteffLocke/status/895198115594153988
http://twitter.com/SteffLocke/status/895198115594153988
http://twitter.com/SteffLocke/status/895198115594153988
http://stat.ethz.ch/R-manual/R-devel/library/base/html/strptime.html
http://stat.ethz.ch/R-manual/R-devel/library/base/html/strptime.html
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class(as.Date("2017-12-31"))
class(as.POSIXct("2017-12-31"))
class(as.POSIXlt("2017-12-31"))

## [1] "Date"
## [1] "POSIXct" "POSIXt"
## [1] "POSIXlt" "POSIXt"

You’ll see that the POSIX values not only returns the class we
expected but “POSIXt” as well. POSIXt is an interchange format
behind the scenes of dates in R. You don’t directly use it and you
can ignore it from here on in.

5.4.3 Getting dates and times

R has some functions for getting current date-time values9.

Sys.Date()
Sys.time()
Sys.timezone()

## [1] "2017-12-13"
## [1] "2017-12-13 12:25:01 GMT"
## [1] "Europe/London"

 

 

Datetime data types in R can feel a little rudimentary or
clunky. I usually use the package lubridate for better date
handling capabilities.

5.5 Missings

Every data type has an NA, an identifier for a missing value.

If you use an NA in an object (more on those in a later chapter)
it will take on the data type used in the object. You can, however,
make NAs directly.

9This is an area showing those wonderful R quirks - the Sys.* functions are
inconsistently cased
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NA
NA_integer_
NA_character_

## [1] NA
## [1] NA
## [1] NA

5.5.1 Checking NAs

You can check what data type an NA is, using the class() func-
tion.

class(NA)
class(NA_integer_)
class(NA_character_)

## [1] "logical"
## [1] "integer"
## [1] "character"

You can check if something is NA with the is.na() function.

is.na(NA)
is.na(1)

## [1] TRUE
## [1] FALSE

5.6 Summary

There a few more datatypes out in the wild but numbers, strings,
booleans, and dates are the core types you’ll encounter.

There are normally as.* and is.* functions for converting to a
datatype or checking if something is a given datatype. You can use
class() to uncover the datatype too.
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Data type Example
Integer 1
Logical TRUE
Numeric 1.1
String / character “Red”
Factor (enumerated string) “Amber” or 2 in c(“Red”,“Amber”,“Green”)
Complex i
Date “2017-12-13”

5.7 R Data Types Exercises

• Convert TRUE to an integer
• What is the datatype of the value returned by Sys.time()?
• What is the datatype of the value returned by Sys.timezone()?
• Make this quote into an R string

– “Do you think this is a game?”, he said. “No, I think
Jenga’s a game”, Archer responded.
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Basic operations

Now that we have some datatypes, we can start learning what we
can do with them.

6.1 Maths 1

In R, we have our common operators that you’re probably used
to if you’ve performed calculations on computers before.

Action Operator Example
Subtract - 5 - 4 = 1
Add + 5 + 4 = 9
Multiply * 5 * 4 = 20
Divide / 5 / 4 = 1.25
Raise to the power ^ 5 ^ 4 = 625

R adheres to BODMAS2 so you can construct safe calculations
that combine operators in reliable ways.

1I’m British, deal with it.
2Brackets, Other, Division, Multiplication, Addition, Subtraction. Note

that in some countries it’s BEDMAS, where the E stands for Exponents, which
is a special Other
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(1 + 2^3) - 5 * (4/2)

## [1] -1

Additionally, there are some other operators worth knowing about.

Action Operator Example
Basic sequence : 1:3 = 1, 2, 3
Integer division %/% 9 %/% 4 = 2
Modulus %% 9 %% 4 = 1

The colon (:) is a really snazzy way of generating a sequence of
numbers that step by 1. You specify a beginning number and an
end number and R will produce all the whole numbers including
and between the two numbers. This even works for negative num-
bers or producing descending values.

1:5
5:1
-1:5
5:-1

## [1] 1 2 3 4 5
## [1] 5 4 3 2 1
## [1] -1 0 1 2 3 4 5
## [1] 5 4 3 2 1 0 -1

Integer division (%/%) tells you how many times the first number
can be divided by the second without returning a fractional value.

1:8
1:8%/%3
1:8%/%4

## [1] 1 2 3 4 5 6 7 8
## [1] 0 0 1 1 1 2 2 2
## [1] 0 0 0 1 1 1 1 2

The modulus (%%) tells you how much is left over after performing
an integer division.
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1:8
1:8%%3
1:8%%4

## [1] 1 2 3 4 5 6 7 8
## [1] 1 2 0 1 2 0 1 2
## [1] 1 2 3 0 1 2 3 0

For reasons3 not worth worrying about, R uses the % sign as the
start of special operators – usually these are custom built, contain
text, or reserved symbols.

6.2 Comparison

The next important thing to know about is how to write compar-
isons; ways of looking at two or more things and finding out if
they’re the same, or different.

6.2.1 Common operators

The less thans and greater thans are symbols that are in pretty
much every language for comparisons, but the test to see if two
values are the same or not can often vary across languages.

2 < 3
3 > 2
2 >= 2
2 <= 2

## [1] TRUE
## [1] TRUE
## [1] TRUE
## [1] TRUE

In R, you test if two values are exactly the same with == and you
test if they’re different with !=.

3Read Rbitrary http://ironholds.org/projects/rbitrary/ for more info

http://ironholds.org/projects/rbitrary/
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2 == 2
2 != 2

## [1] TRUE
## [1] FALSE

You can test if a value is present in a list of acceptable values using
the %in% operator. This may seem a little trivial right now, but
once we start covering more than one value at a time, and working
with strings, it’ll really start to shine!

2 %in% 1:3

## [1] TRUE

6.2.2 A gotcha

Testing for equality can get a little weird with R because it uses a
different way of storing numbers than we would expect. It doesn’t
store numbers quite as precisely as we expect - somewhere at the
very end of a large number of decimal places, the value can be
rounded incorrectly. It doesn’t make a difference to most of our
calculations but it will often hit when you’re comparing two decimal
values.

Let’s see an example.

Both these calculation return what we think of as 0.2

0.5 - 0.3
0.6 - 0.4

## [1] 0.2
## [1] 0.2

Indeed, if we test 0.2 is the same as 0.2 we get a TRUE which
matches our expectations.

0.2 == 0.2

## [1] TRUE
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But, when we perform two calculations, even though they come
out to the same value to us, there’s a little bit of imprecision in
how they’re stored that stops them from being exactly the same
number.

(0.6 - 0.4) == (0.5 - 0.3)

## [1] FALSE

To avoid this issue, if you’re comparing decimal values that re-
sult from calculations it is better to use the all.equal() function.
all.equal() adds a tolerance to the comparison which means
the very subtle imprecision is ignored. The default tolerance is
1.5 × 10−8, in other words the imprecision is very, very small.

all.equal(0.6 - 0.4, 0.5 - 0.3)

## [1] TRUE

6.2.3 Summary

Action Operator Example
Less than (lt) < 5 < 5 = FALSE
lt or equal to <= 5 <= 5 = TRUE
Greater than (gt) > 5 > 5 = FALSE
gt or equal to >= 5 >= 5 = TRUE
Exactly equal == (0.5 - 0.3) == (0.3 - 0.1) is FALSE
Exactly equal == 2 == 2 is TRUE
Not equal != (0.5 - 0.3) != (0.3 - 0.1) is TRUE
Not equal != 2 != 2 is FALSE
Equal all.equal() all.equal(0.5-0.3,0.3-0.1) is TRUE
In %in% "Red" %in% c("Blue","Red") is TRUE

6.3 Logic

Once we can do a single check, we inevitably want to do multiple
checks at the same time.
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To combine multiple checks, we can use logical operators.

6.3.1 Common operators

The ampersand (&) allows us to combine two checks to do an AND
check, which is “are both things true?”.

TRUE & TRUE
TRUE & FALSE
FALSE & FALSE
(2 < 3) & (4 == 4)
(2 < 3) & (4 != 4)

## [1] TRUE
## [1] FALSE
## [1] FALSE
## [1] TRUE
## [1] FALSE

The pipe, or bar (|)4 allows us to do an OR check, which is “are
either of these things true?”.

TRUE | TRUE
TRUE | FALSE
FALSE | FALSE
(2 < 3) | (4 == 4)
(2 < 3) | (4 != 4)

## [1] TRUE
## [1] TRUE
## [1] FALSE
## [1] TRUE
## [1] TRUE

The exclamation point (!) allows us to a perform a NOT check, by
negating or swapping a check’s result. This allows you say things
like “is this check true and that check not true?”.

4Getting this symbol can be painful as it varies substantially by keyboard,
so apologies if it takes you a while to hunt this symbol down.
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TRUE & TRUE
TRUE & !FALSE
!FALSE & !FALSE
(2 < 3) & (4 == 4)
(2 < 3) & !(4 != 4)

## [1] TRUE
## [1] TRUE
## [1] TRUE
## [1] TRUE
## [1] TRUE

6.3.2 Other operators

Less commonly, there other logical checks you might to perform.

We can do an XOR, where one and only one of two values being
checked is true.

xor(TRUE, FALSE)
xor(TRUE, TRUE)
xor(FALSE, FALSE)

## [1] TRUE
## [1] FALSE
## [1] FALSE

6.3.3 Summary

We can produce sophisticated checks from a few simple building
blocks. This will come in very handy down the line when doing
things like filtering datasets or creating new fields in your data.

Action Operator Example
Not ! !TRUE is FALSE
And & TRUE & FALSE is FALSE
And & c(TRUE,TRUE) & c(FALSE,TRUE) is FALSE, TRUE
Or | TRUE | FALSE is TRUE
Xor xor() xor(TRUE,FALSE) is TRUE
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6.4 Summary

This basic operations section has hopefully taught you how to ma-
nipulate values and construct comparisons. These are important
building blocks in data analysis, and whilst we’ve been working
with only a single value at a time, in the next section we’ll see how
it works with more data.

Action Operator Example
Subtract - 5 - 4 = 1
Add + 5 + 4 = 9
Multiply * 5 * 4 = 20
Divide / 5 / 4 = 1.25
Exponent ^ 5 ^ 4 = 625
Less than (lt) < 5 < 5 = FALSE
lt or equal to <= 5 <= 5 = TRUE
Greater than (gt) > 5 > 5 = FALSE
gt or equal to >= 5 >= 5 = TRUE
Exactly equal == (0.5 - 0.3) == (0.3 - 0.1) is FALSE
Exactly equal == 2 == 2 is TRUE
Not equal != (0.5 - 0.3) != (0.3 - 0.1) is TRUE
Not equal != 2 != 2 is FALSE
Equal all.equal() all.equal(0.5-0.3,0.3-0.1) is TRUE
In %in% "Red" %in% c("Blue","Red") is TRUE
Not ! !TRUE is FALSE
And & TRUE & FALSE is FALSE
And & c(1,1) & c(0,1) is FALSE, TRUE
Or | TRUE | FALSE is TRUE,
Xor xor() xor(TRUE,FALSE) is TRUE

6.5 Basic Operations Exercises

1. What is the result of pi^2?
2. Is pi greater than 3?
3. Construct a statement to check if 5 is both greater than 3

and less than or equal to 6
4. What are the results if you check to see if a sequence of 1 to

5 is less than or equal to 3?
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R objects

So far we’ve just worked with some single values to get to grips with
how some of the various operations work. Of course, we rarely work
with a single value! If we did, we could just use a calculator.

This section helps you get to grips with some different ways of stor-
ing data and how to manipulate your datasets in the “traditional”
way. This will help you understand a lot of code written in the
past, and will equip you to understand the material in the next
book, which focuses on data manipulation of tabular data.

7.1 Storing values

When we were performing operations, we got some values output
to the console. One of the key principles in writing code is Don’t
Repeat Yourself (DRY) so we need to know how we can avoid
repeating ourselves in R. One of the ways you can do that is to
store a value for use later.

In R, we can store values by assigning them a name. This makes a
variable or object. We can do this with a few different operators,
but the traditional operator is a <-1. The format for assigning a
value is nameofthing <- value.

1Other valid values are the equals symbol = and you can also do a right-
handed assignment with ->
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my_variable <- 5 + 3
my_variable > 6 & my_variable < 10

## [1] TRUE

 

 

By default, when you store values R doesn’t return the results
to the console. You can change that behaviour by putting
brackets around the assignment like (my_variable <- 5 +
3).

Valid names for a variable include upper-case letters, lower case
letters, numbers anywhere but the beginning, periods (.), and hy-
phens (_).

There are a number of different competing conventions for how you
name variables. The most common conventions are shown below.
I have no strong feelings for any system and only ask that you pick
one and stick with it within a single script. Whatever you do, don’t
forget names are case sensitive!

myfirstvariable <- 1
myFirstVariable <- 1
MyFirstVariable <- 1
my_first_variable <- 1
my.first.variable <- 1

You can create names breaking the rules governing valid names by
placing the rule breaking name between two back-ticks (‘). I don’t
recommend you do this with variables you’ll create, but you’ll often
end up with names that break conventions when importing data,
especially when you import from spreadsheets.

`name with spaces` <- 1
`2017` <- 1
` ` <- 1
`$$$` <- 1

Variables you store get stored in-memory. This means they’ll hang
around whilst R is open and will be gone after that. You can see
variables you’ve created in the Environment tab.
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RStudio will by default save your variables for you so that next
time you open it up, your variables are stored.

 

 

RStudio saving your variables is a blessing because you don’t
have to worry about keeping RStudio open the all time.

It’s also a pretty major curse because you’ll inevitably create
something at some point through the console or an Untitled
R file and then lose that bit of code. Now when your script
runs in a fresh session it’ll fail. You’ll risk tearing your hair
out and worse as you go through the pain of debugging this.

I recommend you get in the habit early of not working with
your session being saved so that you don’t miss vital lines
of code out from your scripts. Turn it off in Tools > Global
Options, untick “Restore .RData into workspace at startup”

If you need to manage what’s been stored you can list objects with
ls() and remove them with rm().

today <- Sys.Date()
rm("today")

Another way you can remove a single object is to overwrite the
object with value NULL.

today <- Sys.Date()
today <- NULL

If you want to remove everything you can usels() inside rm() but
you have to tell the function you’re providing a list of variable
names.

ls()
rm(list = ls())

You can also achieve the same results by using the broom symbol
in the Environment tab in RStudio.
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7.2 Vectors

A vector is a collection of values that hold the same datatype. It is
one-dimensional in that none of the elements in the collection
correspond to other values like they might in a table of values.

A single value is actually a vector of length 1.

When I introduced the colon (:) as a means of generating a se-
quence, we were in fact generating a vector where each element
was a number in the sequence. The vector has a length which is as
long as the number of values generated by the sequence.

-1:1

## [1] -1 0 1

Another way of producing a vector is to use the combine function
(c()). This is great for combining a number of disparate character
strings into a vector.

c("red", "yellow", "blue")

## [1] "red" "yellow" "blue"

A single value is a still a vector. What we see when we use the c()
function is that we’re combining vectors. As a result we can also
use it on longer vectors too.

c(1:3, 2:1, 5:8)

## [1] 1 2 3 2 1 5 6 7 8

When we combine values into a single vector, R will change every-
thing to the same datatype using some conversions.

c(1, FALSE)
c(1, "FALSE")

## [1] 1 0
## [1] "1" "FALSE"
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This implicit conversion is something to be careful of and
can really screw up your results! If in doubt, check the
datatype with the class() function, or look for the vector in
your global environment and see what the datatype is from
there.

We can also give names to values being included in a vector.

c(first = "Steph", last = "Locke")

## first last
## "Steph" "Locke"

7.3 Getting information about vectors

Our class() function will still work with a vector with a length
greater than 1 to get you it’s datatype.

Let’s look at a sequence of numbers and one of the built-in vectors
that contains the alphabet.

class(1:10)
LETTERS
class(LETTERS)

## [1] "integer"
## [1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M"
"N" "O" "P" "Q"
## [18] "R" "S" "T" "U" "V" "W" "X" "Y" "Z"
## [1] "character"

We can use the length() function to find out the number of ele-
ments in a vector.

length(pi)
length(LETTERS)

## [1] 1
## [1] 26
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To extract the names of values in a vector, we can use the names()
function.

steph <- c(Steph = "forename", Locke = "surname")
names(steph)

## [1] "Steph" "Locke"

7.4 Calculations on multiple vectors

When we perform calculations on two vectors, R will try to perform
the operation for each set of elements. This is an element-wise
or pair-wise calculation methodology.

In SQL, it’s equivalent to where you might write colA*colB and
you’ll get the answer calculated for every row in the table. In Excel,
it’s equivalent to a Fill Down of multiplying two values on the same
row.

Let’s looks at how this works in practice in R.

We have two vectors, each containing two elements.

vecA <- 1:2
vecB <- 2:3

## [1] 1 2
## [1] 2 3

If we want to multiply the two vectors by each other, R will match
each element in the first vector with its counterpart in the second
and multiply the two values together to make a new element.

vecA * vecB

## [1] 2 6

We can also do this with vectors of different lengths to a certain
extent. The most common scenario is operating on a vector by
doing something with a single value.
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Figure 7.1

A single value is a vector of length 1. When R gets a request to do
something with a vector of length X and a vector of length 1, it will
basically repeat the vector of length 1 X times to make two vectors
the same length. It will then perform the calculation element-wise.

vecA * 3

## [1] 3 6

You can also use this functionality of making a vector the same
length as another, known as recycling, work for other mis-matched
vector sizes. The only rule is that one of the vector lengths must
divide cleanly by the other.

• Two vectors of the same length divide by the other’s length
exactly one time and won’t need to recycle

• A vector of length one always cleanly divides any other vec-
tor’s length and so will be recycled

• A vector of length 2, will divide any vector with an even
length and so will be recycled in those cases, but it cannot
recycle cleanly for odd length vectors
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Figure 7.2

1:10 * 2
1:10 * 2:3
1:10 * 2:4

## [1] 2 4 6 8 10 12 14 16 18 20
## [1] 2 6 6 12 10 18 14 24 18 30
## [1] "longer object length is not a multiple of shorter
object length"

Vector recycling is useful and dangerous – it can help you make ele-
gant code or give you unexpected results. Especially when starting
out, I recommend you make your vectors either the same length or
length 1.

7.4.1 Bitwise

Our logical operators that we covered earlier, work in a pairwise
fashion. They’ll return a vector of the same length as the longest
one used in your logical statement.
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Figure 7.3

a <- 1:2 > 1
b <- 2:3 > 1

## [1] FALSE TRUE
## [1] TRUE TRUE

Making logical statements returns vectors with a logical datatype.

a & b
a | b

## [1] FALSE TRUE
## [1] TRUE TRUE

Occasionally, you expect to only be operating on a single pair of
values and want to enforce that R should only do the calculation
on the first pair. In R, this called a bitwise AND (&&) or OR (||).

A bitwise logical statement will only do the check for the first ele-
ments in the vectors and ignore all the others.

a && b
a || b

## [1] FALSE
## [1] TRUE
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Use bitwise operators with extreme care!

7.5 data.frames

A data.frame is a table similar to what we’re used to working with
in most data analysis tools. It will contain a number of rows with
columns containing different pieces of information. Each column
in a data.frame has a datatype but it does not have to be the same
datatype as the other columns.

We can construct a data.frame from individual vectors via the
data.frame() function.

data.frame(a = 1:2, b = c("blue", "red"))

## a b
## 1 1 blue
## 2 2 red

You can also give row names to the rows you end up making, how-
ever, I recommend you add these in as a column instead as it’ll
make them easier to work with long-term.

baddf <- data.frame(a = 1:2,
b = c("blue","red"),
row.names = c("First","Second"))

gooddf <- data.frame(a = 1:2,
b = c("blue","red"),
ID = c("First","Second"))

Throughout many of the examples, I’ll use the example datasets
that are available by default in R.

View(iris)
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Sepal.Length Sepal.Width Petal.Length Petal.Width Species
5.1 3.5 1.4 0.2 setosa
4.9 3.0 1.4 0.2 setosa
4.7 3.2 1.3 0.2 setosa
4.6 3.1 1.5 0.2 setosa
5.0 3.6 1.4 0.2 setosa
5.4 3.9 1.7 0.4 setosa

 

 

The View() function is specific to RStudio and provides a
nice visual grid view of a data.frame and it allows you to
search and sort the table for some initial exploration.

More commonly, we’ll import data from an outside source.

7.6 Importing data.frames

You can import data via code, but one of the easiest ways of getting
started is to load data via RStudio and have it generate the code
for you.

To import data…

1. Go to the Environment tab and select Import Dataset
2. Select the relevant type of data you want to import
3. Browse to the file you want to upload.

 

 

Keeping data in the project directory is ideal as it keeps every-
thing in one place and makes imported code easier to read.

You can tweak the advanced settings and then select the Import
button to load the data directly into memory. Alternatively, you
can copy the code it generated for you and paste it into a script. By
doing this copy and pasting, you will make the import reproducible.
Next time you need to load the data you can just run the code,
instead of using the interface again.
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Figure 7.4

7.6.1 Error!!

If you were tying to do this import you may have gotten an error
when you tried to load a file because you don’t have some of the
required functionality that RStudio expects you to have.

It will tell you the name of the thing you’re missing. In my case -
I’m missing the package “readr”. To make this available to us, we
go to the Packages tab and then:

1. select Install
2. type “readr”
3. select the Install button
4. accept any popups for things like restarting R

7.7 Getting information about data.frames

Our data.frames are composites, they are the result of combin-
ing a number of vectors with different data types. As a conse-
quence, when we run our class() function, it tells us an object is
a data.frame and no longer returns the underlying datatype.

class(iris)

## [1] "data.frame"
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You do not get the number of rows in a data.frame when you run
the length() function, instead you get the number of columns2.
Alternatively, you can run the more clearly named ncol() function
to return the number of columns in a data.frame.

length(iris)
ncol(iris)

## [1] 5
## [1] 5

You can get the number of rows via the nrow() function.

nrow(iris)

## [1] 150

Similarly to length(), the names() function when applied to
data.frame’s only works on the columns, so you can use it to get
column names. A clearer alternative is to use the colnames()
function. You can use rownames() to get names for rows, if they
exist.

mydf <- data.frame(a = 1:2,
b = c("blue","red"),
row.names = c("First","Second"))

names(mydf)
colnames(mydf)
rownames(mydf)

## [1] "a" "b"
## [1] "a" "b"
## [1] "First" "Second"

2This is because a data.frame is actually just a prettily printed list, and each
column in an element in said list, and length returns the number of elements
overall.
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7.8 Lists

Lists are a catch-all object. They literally hold any and all types
of the objects covered in this section, including list objects!

You can create lists with the list() function, and like with our
other objects you can have named and unnamed elements.

In this example, we create a list object holding two vectors.

mylist <- list(a = 1:3, LETTERS)
mylist

## $a
## [1] 1 2 3
##
## [[2]]
## [1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M"
"N" "O" "P" "Q"
## [18] "R" "S" "T" "U" "V" "W" "X" "Y" "Z"

At least initially, most people tend to work with their data in
a data.frame and may only interact with a list as a consequence
of doing something like building a linear regression model. Lists
are very common outputs to statistical functions because you need
things like a formula, fitted results, coefficients, model metrics, and
more. If you do build a model though, there’s a bunch of helper
functions for extracting different components so you don’t even
have to think about the fact you’re working with a list.

7.8.1 Getting information about lists

The length() function will tell you how many elements there are
in a list.

length(mylist)

## [1] 2

names() lets you get the element names and returns a blank ("")
where no name was provided.
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names(mylist)

## [1] "a" ""

7.9 Other object types

There a number of other object types in R. They won’t be covered
in detail in this book, because they tend to be used by a small
fraction of R users.

• A matrix is a two-dimensional object that can only contain
one datatype

• An array is a multi-dimensional object that also can contain
only one datatype

• A table object is similar to a matrix but is created by pro-
ducing a contingency table

In R, developers can also create other object types specific to their
requirements. People use this to create geospatial objects and more.
I don’t recommend you think about creating your own custom ob-
jects, especially at this point in your R writing career. If/when you
want to write your own custom classes then my preferred package
for that is R6.

7.10 Useful functions

Whatever the object type, there are some functions that come in
handy for exploring it and getting some useful metadata.

You get the contents of any object by writing its name.

mylist

## $a
## [1] 1 2 3
##
## [[2]]
## [1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M"
"N" "O" "P" "Q"
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## [18] "R" "S" "T" "U" "V" "W" "X" "Y" "Z"

However, if you’re working with a lot of data, you probably don’t
want to fill up your console that way. R has two functions, head()
and tail(), which allow you to see values from the beginning or
end of an object. For objects containing many elements, such as
lists or data.tables, head() and tail() returns the first or last 5
values respectively.

head(LETTERS)
tail(LETTERS)

## [1] "A" "B" "C" "D" "E" "F"
## [1] "U" "V" "W" "X" "Y" "Z"

If you want to examine an R object, you can use the str() function
to get the structure of the object.

str(mylist)

## List of 2
## $ a: int [1:3] 1 2 3
## $ : chr [1:26] "A" "B" "C" "D" ...

7.11 Summary

You can perform calculations on the fly or store results for later
use. You can assign values with the <- operator.

Functions like class(), length(), and head() work well to extract
information about R objects.

R performs calculations over vectors so that you only have to pro-
vide two or more vector names and the operation you want per-
formed. R will then perform this operation pair-wise for the vec-
tors.

You can import datasets in R by using the “Import Dataset” func-
tion. This will also give you the code to use so that you can write
code that another person will be able to use. This is great because
it makes your work reproducible and automatable!
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As well as vectors and data.frames, there are list object types and
some other object types. These are less commonly used, although
lists are quite common when getting outputs from statistical func-
tions.

7.12 R objects exercises

1. See what’s in the built-in variable letters
2. Write a check to see if “A” is present in letters
3. Find out which values in the sequence 1 to 10 are greater

than or equal to 3 and less than 7
4. Make a vector containing the numbers 1 to 50
5. Make a vector containing two words
6. What happens when you combine these two vectors?
7. Make a data.frame using the two vectors
8. What happened to your text vector?
9. Make a list containing some of the variables you’ve created

so far
10. Retrieve the head or tail of the iris dataset
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Chapter 8

Grid references

With R objects, it’s possible to use a grid reference system to select
values from an object.

In vectors and lists, you can specify the element position as they
only have a single dimension. In data.frames, you can pinpoint the
element via the row and the column.

You can provide a grid reference by adding square brackets after a
name e.g. mylist[ ]. Inside the square brackets, we can provide
values in a few different ways to say which part of the object’s “grid”
is required.

If you want everything in an object, you can just use the object’s
name or put empty square brackets after it i.e. LETTERS and
LETTERS[] are identical.

LETTERS[]

## [1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M"
"N" "O" "P" "Q"
## [18] "R" "S" "T" "U" "V" "W" "X" "Y" "Z"
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8.1 Grid references with numbers

To select a specific element, you provide the number indicating its
position in the object.1

This is similar to Excel. When you only have a single column of
values in a spreadsheet, you can identify a value to someone by
telling them what row number it’s on. When you have a table, you
need to tell someone both the row and the column for someone to
find the exact value.

8.1.1 Single value selection with vectors

To select a single element from a vector, we need to put the ele-
ment’s position inside square brackets after the vector.

To select the second element in the vector LETTERS we put its po-
sition (2) into the grid.

LETTERS[2]

## [1] "B"

We’re not bound to selecting values from objects that are stored
either! For instance, we can generate a sequence of numbers and
subset from it directly.

(10:25)[13]

## [1] 22

8.1.2 Single value selection with data.frames

In a data.frame, you can provide one or two values. These are
comma separated inside the square brackets and row numbers get
specified first e.g. iris[ row , column ]. If you want to select
all rows or all columns you leave that part of the reference blank

1The first element in an R object is at position 1. This is contrary to a
number of programming languages where the first element is at position 0.
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e.g. iris[1, ] to return the first row and iris[ ,2] to return
the second column.

mydf <- data.frame(a = 1:5, b = 6:10, c = 11:15)

a b c
1 6 11
2 7 12
3 8 13
4 9 14
5 10 15

 

 

Whenever I’m going to output a data.frame, I’m going to
output in a formatted way as opposed to how it’ll appear in
the console. This is to make it easier to see the changes as the
console view can get a little much! You can use the View()
function to see the data.frame in a nice browser in RStudio.

If we provide a row number by using df[ X , ], we will get a
data.frame object back with just one row.

mydf[1, ]

a b c
1 6 11

If we provide a column number by using df[ , Y ], we will get a
vector back.2

mydf[, 1]

## [1] 1 2 3 4 5

If we specify a row and a column by using df[ X , Y ], we get a
vector back containing a single element although in we’d normally
refer to it as a single value for brevity.

2This is not quite accurate but it’s a good starting point. In fact, a
data.frame is actually a list with pretty print methods so you could theoreti-
cally have a column that is a list.
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mydf[3, 3]

## [1] 13

8.1.3 Single value selection with lists

When we use the grid reference system to select stuff from lists, R
returns a list with just the element you selected in it.

Our example list contains two vectors. Both vectors are stored as
elements but the sequence one to three was additionally given a
name.

mylist <- list(a = 1:3, LETTERS)
mylist

## $a
## [1] 1 2 3
##
## [[2]]
## [1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M"
"N" "O" "P" "Q"
## [18] "R" "S" "T" "U" "V" "W" "X" "Y" "Z"

We can select elements based on their position, irrespective of
whether they have names.

mylist[2]

## [[1]]
## [1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M"
"N" "O" "P" "Q"
## [18] "R" "S" "T" "U" "V" "W" "X" "Y" "Z"

If an element was named, then that name will be kept and dis-
played.

mylist[1]
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## $a
## [1] 1 2 3

8.1.4 Multiple values

Remember how a single value is still counted as a vector by R? This
means that when we say letters[1] the 1 is actually a vector,
and that means that we can provide longer vectors in our grid
specifications too!

For a vector, that means we can provide a single vector with the
positions of the elements to return.

LETTERS[1:5]

## [1] "A" "B" "C" "D" "E"

The ranges don’t have to be continuous either.

LETTERS[c(1:5, 23:26)]

## [1] "A" "B" "C" "D" "E" "W" "X" "Y" "Z"

In fact, you can repeat numbers to get the same value out multiple
times.

LETTERS[c(1, 1, 1)]

## [1] "A" "A" "A"

These things all hold true for data.frames too. This means we can
provide ranges to both rows and columns to subset by the position
of values in the table.

mydf[1:3, 1:2]

a b
1 6
2 7
3 8
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8.1.5 Negative values

As well as positive specifications, we can also use negative values.
These tell R which bits of the grid that you don’t want.

Here I exclude the first five letters.

LETTERS[-(1:5)]

## [1] "F" "G" "H" "I" "J" "K" "L" "M" "N" "O" "P" "Q" "R"
"S" "T" "U" "V"
## [18] "W" "X" "Y" "Z"

When it comes to data.frames we can provide negative values in
both rows and columns to produce a subset we’re interested in.

mydf[-3, -2]

a c
1 1 11
2 2 12
4 4 14
5 5 15

8.1.6 Missing values

You might be wondering what happens if you refer to a row number
or element position that is not between 1 and the length of your
object.

In such a scenario, R will actually return an NA (a missing value)
for that position.

LETTERS[23:29]

## [1] "W" "X" "Y" "Z" NA NA NA

mydf[5:6, ]
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a b c
5 5 10 15
NA NA NA NA

8.2 Grid references with names

Where names are used, we can provide these names in our grid
references.

mylist["a"]

## $a
## [1] 1 2 3

This works for column (and row) names.

mydf[, "a"]

## [1] 1 2 3 4 5

We can provide longer vectors containing column names too. Recall
when we used numbers, one value in the column returned a vector,
but multiple values resulted in a data.frame? The same is true
here.

mydf[, c("a", "b")]

a b
1 6
2 7
3 8
4 9
5 10
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8.3 Grid references with conditional val-
ues

Whilst we often want to subset data.frames to some specific
columns, a lot of the time with vectors and data.frames we want
to be able to apply a condition that determines which values are
returned. We want to filter rows.

Like with SQL, you can apply a filter by telling R which rows (or
elements) it should and shouldn’t return. You do this be providing
a set of boolean values where TRUE means the row should be
returned and FALSE says it should be excluded.

We can provide hard-coded boolean values to the row and column
parts of our grid reference system.

For instance, if I wanted to exclude the second column in the
data.frame I could say to include the first and third by giving them
a TRUE in my filter and I could exclude the second column by giv-
ing it a FALSE in my filter.

mydf[, c(TRUE, FALSE, TRUE)]

a c
1 11
2 12
3 13
4 14
5 15

 

 

You might be used to using 0 and 1 as shorthand for boolean
values. Unfortunately, if you try to use this you find NAs
returned for any values you intended to be excluded by using
0, and you’ll get the first value repeated everywhere you used
a 1 to indicate inclusion.

8.3.1 Building conditional vectors

Hard-coding TRUE and FALSE values is probably not your idea of
fun and certainly isn’t mine. We can use our knowledge of building



8.3. GRID REFERENCES WITH CONDITIONAL VALUES 89

comparisons to generate our booleans for inclusion.

Let’s say we wanted all the letters of the alphabet up to and includ-
ing “e”. We could use our comparison operators to compare every
letter against “e” and return a TRUE where it is “e” or occurs
before “e” in the alphabet, and it would return a FALSE when it
occurs after “e”.

This gives us an include and exclude instruction for each of the 26
letters. We can then use this boolean vector as our filter in the
grid reference system.

earlyletters <- LETTERS <= "E"
LETTERS[earlyletters]

## [1] "A" "B" "C" "D" "E"

This can be simplified by doing the comparison directly within the
grid reference.

LETTERS[LETTERS <= "e"]

## [1] "A" "B" "C" "D"

You’re not limited to single comparisons either. You can use AND
(&) and OR (|) to produce compound statements.

If we wanted every letter between (and including) “B” and “E” we
can check to see which elements of LETTERS are “B” or are after
“B” and combine this with our existing “E” check using an &.

LETTERS[LETTERS <= "E" & LETTERS > "B"]

## [1] "C" "D" "E"

8.3.2 Conditional filters for data.frames

If we wanted to select all columns in our data.frame that had names
beginning with “a” or “b”, we could compare the names to the letter
“c” and use this set of boolean values to be our filter.

To extract the column names, we can use colnames(). This returns
a vector of character values and we can run a comparison.
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abcols <- colnames(mydf) < "c"

Now we can use that in our grid reference system.

mydf[, abcols]

a b
1 6
2 7
3 8
4 9
5 10

Using the grid reference system, if we wanted to apply a filter to our
rows based on some column’s data we would first need to extract
the column’s values, then produce our filter, then apply our filter.

 

 

Don’t worry if this sounds long-winded and crazy to you.
You’re thinking that because it’s true! A little bit later in
this section we’ll cut out some of the craziness.

For instance, if we wanted everything from our table where our
rows had a value for column “a” less than four, we would need to
get column “a”s values, compare it to 4, and use this in our row
area of the grid reference.

lt4 <- mydf[, "a"] < 4
mydf[lt4, ]

a b c
1 6 11
2 7 12
3 8 13

Or we could have written it all in one go.

mydf[mydf[, "a"] < 4, ]
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8.3.3 Recycling values

When R has two mismatched vectors in terms of length, it will try
to recycle values. We saw this earlier when we worked with vectors.

You can use this to provide shorter vectors of value (although I
don’t recommend you do so often).

An elegant demonstration of this is returning every other letter in
the alphabet.

We need a filter that puts TRUE against the odd number positions
and a FALSE against the even number positions. We could write a
comparison that checks the position number is odd but that would
be quite long winded.

Instead, we can rely on recycling to take a pair of values and repeat
them. We can provide a vector containing TRUE and FALSE it
will recycle them so that every odd numbered position gets a TRUE
and every even numbered position gets a FALSE.

LETTERS[c(TRUE, FALSE)]

## [1] "A" "C" "E" "G" "I" "K" "M" "O" "Q" "S" "U" "W" "Y"

8.4 Mixed grid references

You cannot provide a mix of element positions, element names, and
booleans in a single vector to get a subset. This is because you have
to provide a vector and a vector containing a mix of datatypes will
convert everything to a single datatype.

We can verify with our list. We’ve seen how referring to position 1
works, and referring to the element called “a”, so if we wanted to
specify both of these we could put them in a vector. The conver-
sion to strings happens though and then R searches the list for an
element called “1”, can’t find it, and returns an NA.

c(1, "a")
mylist[c(1, "a")]
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## [1] "1" "a"
## $<NA>
## NULL
##
## $a
## [1] 1 2 3

Whilst you can’t combine the methods in a single section of the
grid reference system, you can use different systems in different
positions. This is most useful for data.frames when we want to
subset our rows by a condition, and only return certain columns at
the same time.

mydf[1:2, c("a", "b")]

a b
1 6
2 7

8.5 Other reference methods

If you need to select a given named value or column from an object,
there are some alternative selection methods you’ll use.

There are double square brackets for when you expect one, and
only one, named element. This is mainly used for lists.

mylist[["a"]]

## [1] 1 2 3

There is a much nicer option though for lists and data.frames. That
option is using the dollar sign ($) to access named elements in lists
or columns in data.frames.

mylist$a

## [1] 1 2 3
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mydf$b

## [1] 6 7 8 9 10

The $ methodology has some benefits: It uses fewer characters and
you can use code-completion with it.

We can use both these notations inside our grid reference sys-
tem. This becomes very handy for writing row conditions for
data.frames.

Taking our earlier example of subsetting rows where column “a”’s
values are less than 4 becomes much simpler.

mydf[mydf$a < 4, ]

## a b c
## 1 1 6 11
## 2 2 7 12
## 3 3 8 13

 

 

This is the old-school way of working with data.frames. It’s
important to be able to write queries of your data this way,
or at least read other people’s code but as soon as you can
you should move onto the data.table or tidyverse ways of
working with data.frames. The next book in this series will
focus on the tidyverse way of working with data.frames.





Chapter 9

Changing objects

By utilising our reference systems, not only can we select data of
interest to us, but we can add new data, update existing values,
and even delete values.

You can update part or all of simple objects by assigning new values
against a grid-reference.

Adding additional values in a vector involves specifying new ele-
ment positions using the grid system and assigning a value to that
part of the object.

letters[27] <- "|"
tail(letters)

## [1] "v" "w" "x" "y" "z" "|"

Similarly, we can specify a row in a data.frame and provide all the
necessary values to make a complete row.

mydf[6, ] <- c(pi, Inf, -Inf)
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a b c
1.000000 6 11
2.000000 7 12
3.000000 8 13
4.000000 9 14
5.000000 10 15
3.141593 Inf -Inf

For data.frames, if you want to create a new column, it’s usually
much easier to use our $ notation. You specify the column and
assign it new values.1

mydf$d <- 5

a b c d
1.000000 6 11 5
2.000000 7 12 5
3.000000 8 13 5
4.000000 9 14 5
5.000000 10 15 5
3.141593 Inf -Inf 5

Updating values involves providing a set of values of the same size
as the destination.

Here I overwrite the first three elements in our lower case alphabet
vector with the first three elements in our upper case alphabet
vector.

letters[1:3] <- LETTERS[1:3]
head(letters)

## [1] "A" "B" "C" "d" "e" "f"

I can update rows by specifying the row and providing a complete
set of new values.

mydf[1, ] <- 1:4

1This works because data.frames are actually lists so you’re creating a new
element containing these values.
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a b c d
1.000000 2 3 4
2.000000 7 12 5
3.000000 8 13 5
4.000000 9 14 5
5.000000 10 15 5
3.141593 Inf -Inf 5

If you provide something that is not the same size, R will apply the
recycling rules. Again, this is nifty and terrible at the same time.

Even though there are currently four columns in our table, we’re
only providing two values here. Those two values will be recycled
across the columns.

mydf[2, ] <- 1:2

a b c d
1.000000 2 3 4
1.000000 2 1 2
3.000000 8 13 5
4.000000 9 14 5
5.000000 10 15 5
3.141593 Inf -Inf 5

If you want to delete values, you can overwrite an object after doing
a negative selection. Here I remove the first row of the data.frame.

mydf <- mydf[-1, ]

a b c d
2 1.000000 2 1 2
3 3.000000 8 13 5
4 4.000000 9 14 5
5 5.000000 10 15 5
6 3.141593 Inf -Inf 5

An alternative method is to specify a subset and assign the the
value NULL. NULL removes contents in lists and data.frames.

In a list, I can specify one or more elements and assign NULL to
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it, in order to remove the specific elements.

mylist[2] <- NULL
mylist

## $a
## [1] 1 2 3

I can remove a column in a data.frame by assigning NULL to it.

mydf$c <- NULL

a b d
2 1.000000 2 2
3 3.000000 8 5
4 4.000000 9 5
5 5.000000 10 5
6 3.141593 Inf 5

Rows usually get deleted by selecting everything but the the rows
you want to discard and overwriting the data.frame variable.

mydf <- mydf[-1, ]

a b d
3 3.000000 8 5
4 4.000000 9 5
5 5.000000 10 5
6 3.141593 Inf 5
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Summary

In R, you can subset objects using positive, negative, and boolean
values. You’re able to apply the same methodology to vectors, lists,
and data.frames.

When working with data.frames or lists you can use the dollar ($)
notation to refer to values in a succinct way. You can use this
within data.frame subsets to build filters for rows based off the
values in columns.

Inserting, updating, or deleting values usually involves specifying a
subset and assigning values to it. When deleting, you often assign
a value of NULL. You can also use NULL to remove variables in a
similar fashion.
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Data manipulation
exercises

1. Select all LETTERS before “X”
2. Select the first 5 rows from the built-in data.frame iris
3. Select the first 2 columns from iris
4. Select the column Sepal.Length from iris by name
5. Select rows from the iris data.frame where the Sepal.Length

is greater than 5.8cm
6. Select rows from the iris data.frame where the Sepal.Width

is below the average for that column
7. Select everything from iris except the Species column
8. Create a copy of the iris data that just contains the first

100 rows and call it myIris
9. Update the species column to the value “Unknown” in myIris
10. Delete rows from myIris where the sepal length is greater

than 5.5
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Chapter 12

R functions

In previous sections we’ve seen R functions that are used on ob-
jects to perform some activity. Functions seen so far include:

• class() and is.*() functions for checking datatypes
• as.* for converting to datatypes
• length() and names() for metadata
• head() and tail() for getting a small amount of elements

from an object
• ncol(), nrow(), colnames(), and rownames() for getting

data.frame metadata
• Sys.Date() and Sys.time() for getting current date-time

values

There are a huge range of functions out there, whether available in
R straight away, or from adding extra functionality.

Understanding how functions work and being able to use them
correctly will help you learn, and use R effectively.

12.1 Using a function

A function does some computation on an object. The use of a
function consists of:

1. A function’s name
2. Parentheses
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3. 0 or more inputs

Each input is provided to an argument or parameter within a
function.

These arguments have names, although you don’t often need to
provide the names.

You can find out what arguments a function takes by using the code
completion and its help snippet, or by searching for the function
in the Rstudio Help tab.

When you’re inside the brackets of a function you can get the list
of available arguments and auto-complete them.

 

 

Try getting the code completion to work with the function
tail().

12.2 Examining functions

One of the niftiest things about R is being able to see the code
for a function. You can examine how many functions work by just
typing their name without any parentheses.

Sys.Date

## function ()
## as.Date(as.POSIXlt(Sys.time()))
## <bytecode: 0x000000000725af60>
## <environment: namespace:base>

The first line(s) show how the arguments are specified. Subsequent
lines show the code and the final lines starting with < can be mostly
ignored.

12.3 Function input patterns

Functions tend to conform to certain patterns of inputs.
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12.3.1 No inputs

Some functions don’t require the user to provide info and so they
don’t have any arguments. Sys.Date() and similar functions do
not need user input because the functions provide information
about the system.

Sys.Date

## function ()
## as.Date(as.POSIXlt(Sys.time()))
## <bytecode: 0x000000000725af60>
## <environment: namespace:base>

Looking at the function definition, we can see that there are no
arguments specified in the first line.

12.3.2 Single inputs

Other functions only have a single allowed input. length() returns
the length of an object so it only allows you to provide it with an
object.

length

## function (x) .Primitive("length")

We can see in this definition1 that the function takes the argument
x.

12.3.3 Many inputs

Some functions have multiple inputs, although not all of them are
necessarily mandatory. head() and tail() have been used so far

1the code looks a bit odd - this is because it’s specified a bit differently to
most functions, but fear not! In R, there are some different ways of writing
code. The normal way is called S3 but functions that are designed to work
with properties of objects like length use a different system called S4. For the
most part you’ll rarely need to dig into S4 code as most R functionality is built
in S3 and will allow you to check out it’s code easily.
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with only a single input but they take an optional argument as to
how many elements should be returned.

head(letters)
head(letters, 2)

## [1] "A" "B" "C" "d" "e" "f"
## [1] "A" "B"

The rnorm() function allows us to generate a vector of values from
a normal distribution. We can tell it how many values we need
(n), and we can optionally provide the mean (mean) and standard
deviation (sd) to describe the Normal curve that values should be
selected from.

rnorm

## function (n, mean = 0, sd = 1)
## .Call(C_rnorm, n, mean, sd)
## <bytecode: 0x000000002c1abf58>
## <environment: namespace:stats>

Looking at how rnorm is specified we can see that we’re expected to
provide n, but mean and sd are given values of 0 and 1 respectively
by default.

rnorm(n = 5)
rnorm(n = 5, mean = 10, sd = 2)

## [1] 0.6131313 -0.3567561 0.1159489 -1.0260021 0.8866003
## [1] 6.414939 10.017482 11.266005 10.261910 8.227831

12.3.4 Unlimited inputs

Other functions can take an unlimited amount of input values.
Functions like sum() will sum the values from a number of objects.

sum(1:3, 1:9, pi)

## [1] 54.14159
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The ellipsis (...) is used to denote when the user can provide any
number of values.

sum

## function (..., na.rm = FALSE) .Primitive("sum")

12.4 Naming arguments

Every input provided to a function is associated with an argument.

Each argument must have a name. Even functions that allow un-
limited inputs assign these inputs to a name. Behind the scenes,
they get put into a list object and the list gets called ... (or
ellipsis).

There are some typical names for arguments that take your data
object. These include:

• x
• data
• .data
• df

You don’t usually have to provide the argument names, just put
things in the relevant places in the function. Sometimes though,
you will need to use argument names.

Here are my rules of thumb for knowing when you need to name
names:

1. You’re using the arguments in an order that is different from
the function author’s intended order (you might be skipping
some arguments as the default values are fine or you might
just prefer a different order)

2. The arguments you want to specify show up after the ... in
a function’s argument list

3. You want to give a specific name to a value in a ... argument

We can provide names2 for clarity or so we can use arguments out
of order if we prefer to.

2Note that you don’t have to type the full name as R will attempt to match
up values, but doing that can and does get a lot of R users into trouble so I
don’t recommend it.
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rnorm(n = 5, mean = 10, sd = 2)
rnorm(mean = 10, sd = 2, n = 5)

## [1] 7.897466 9.872175 10.626260 9.177773 10.422403
## [1] 9.374904 9.676517 3.984936 10.841058 8.245642

A common behaviour change that you’ll need to work with is how
missing (NA) values get handled. Functions that allow you change
this behaviour, usually have an argument called things like na.rm,
na.omit, and na.action.

sum(1:5, NA)
sum(1:5, NA, na.rm = TRUE)

## [1] NA
## [1] 15

In the sum() example, I used the na.rm argument’s name. This
is because otherwise the TRUE would be considered part of the val-
ues being passed for summing. Without the name, the value gets
considered as part of the ....

sum(1:5, NA, TRUE)

## [1] NA

A function will sometimes have ... at the end of its list of argu-
ments when it utilises other functions and those have optional /
default values.

For instance the predict() function allows us to take a model
we’ve built and apply it to some new data.

It works for many different types of model and these different
models expect different types of inputs. Some models expect
data.frames, others expect time series data, etc.

There’s lots of potential variations, the only thing that is manda-
tory is the model object.

predict
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## function (object, ...)
## UseMethod("predict")
## <bytecode: 0x000000000e443458>
## <environment: namespace:stats>

The predict() function then determines what type of model object
you’ve provided it and passes the model, and any other values you
provided, to the relevant function, returning back the results.

linearMod <- lm(Sepal.Length ~ ., data = iris)
logisticMod <- glm(Species ~ ., data = iris, family = binomial)

predict(linearMod, iris[1, ])
predict(logisticMod, iris[1, ])

## 1
## 5.004788
## 1
## -38.02709

12.5 Summary

R uses functions as the means of performing operations3.

Functions can take 0 or more arguments. All arguments may be
mandatory, but some can be optional or even undefined.

You can use argument names to provide arguments in different
orders to that defined by the function author or to provide them
in the case where an ellipsis (...) is used in a function.

12.6 R functions Exercises

Using what you’ve learned about investigating the components of
functions…

1. Use pmin() to find the smallest values element-wise of the
three vector 1:51, 25:75, 30:-20

3Indeed, even operators like + are actually functions behind the scenes
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2. Use paste() to combine the upper case letters into a single
string with ", " between each letter

3. Use list.files() to see what files are in your current di-
rectory. Return the fully qualified names not just the file
names

4. View the code for ncol() and work out how the number of
columns is being determined
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R packages

An R package is a bundle of functions and/or datasets. It extends
the capabilities that the “base” and “recommended” R packages
have. By using packages we can do data manipulation in a variety
of ways, produce all sorts of awesome charts, generate books like
this, use other languages like Python and JavaScript, and of course,
do all sorts of data analysis.

13.1 Installing packages

Once you’ve identified a package that contains functions or data
you’re interested in using1, we need to get the package onto our
machine.

To get the package, you can use an R function or you can use the
Install button on the Packages tab.

install.packages("datasauRus")

If you need to install a number of packages, install.packages()
takes a vector of package names.

1Using CRAN or sites like rdrr.io

113
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install.packages(c("datasauRus", "tidyverse"))

Updating packages involves re-running install.packages() and
it’s usually easier to trigger this by using the Update button on the
Packages tab and selecting all the packages you want to update.

13.1.1 Installing from GitHub and other sources

The install.packages() function works with CRAN, CRAN mir-
rors 2, and CRAN-like repositories3

If you want to install BioConductor packages, there are some
helper scripts available from the BioConductor website, biocon-
ductor.org4.

Other package sources, such as GitHub, will involve building pack-
ages before they can be installed. If you’re on Windows, this
means you need an additional piece of software called Rtools5. The
other handy thing you’ll need is the package devtools (available
from CRAN). devtools provides a number of functions designed
to make it easier to install from GitHub, BitBucket, and other
sources.

library(devtools)
install_github("lockedata/pRojects")

13.2 Recommended packages

Here are my recommended packages – many of these will be covered
in later books.

2Copies of CRAN made available to avoid overloading central servers.
3The most common CRAN-like systems are building your own local CRAN

with the package miniCRAN and using the package drat to make repositories,
especially remote repositories.

4http://www.bioconductor.org/install/
5http://cran.r-project.org/bin/windows/Rtools/

http://www.bioconductor.org/install/
http://cran.r-project.org/bin/windows/Rtools/
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13.2.1 tidyverse

The tidyverse is a suite of packages designed to make your life
easier. It’s well worth installing and many of the packages in this
recommendations section are part of the tidyverse.

install.packages("tidyverse")

13.2.2 Getting data in and out of R

The following packages can be used to get data into, and out of R:

• Working with databases, you can use the DBI package and
its companion odbc to connect to most databases

• To get data from web pages, you can use rvest
• To work with APIs, you use httr
• To work with CSVs, you can use readr or data.table.6
• To work with SPSS, SAS, and Stata files, use readr and

haven

13.2.3 Data manipulation

The tidyverse contains great packages for data manipulation in-
cluding dplyr and purrr.

Additionally, a favourite data manipulation package of mine is
data.table. data.table tends to have a bit of a steeper learn-
ing curve than the tidyverse but it’s phenomenal for brevity and
performance.

13.2.4 Data visualisation

• For static graphics ggplot2 is fantastic - it adds a sensible
vocabulary to help you construct charts with ease

• plotly helps you build interactive charts from scratch or
make ggplot2 charts interactive

• leaflet is a great maps package
• ggraph helps you build effective network diagrams

6data.table tends to be faster for CSV read and writes.
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13.2.5 Data science

• caret is an interface package to many model algorithms and
has a raft of insanely useful features itself

• broom takes outputs from model functions and makes them
into nice data.frames

• modelr helps build samples and supplement result sets
• reticulate is a package for talking to Python and, there-

fore, enables you to work with any deep learning framework
that is based in Python. tensorflow is a package based on
reticulate and allows you to work with tensorflow in R

• sparklyr allows you to run and work with Spark processes
on your R data

• h2o is a package for working with H2O, a super nifty machine
learning platform

13.2.6 Presenting results

• rmarkdown is the core package for combining text and code
and being able to produce outputs like HTML pages, PDFs,
and Word documents

• bookdown facilitates books like this
• revealjs allows you to make slide decks using rmarkdown
• flexdashboard and shiny allow you to make interactive, re-

active dashboards and other analytical apps

13.2.7 Finding packages

As well as using online search facilities like CRAN7 and rdrr.io8 for
packages, there are some handy packages that help you find other
packages!

• ctv allows you to get all the packages in a given CRAN task
view9, which are maintained lists of package for various tasks

• sos allows you to search for packages and functions that
match a keyword

7http://cran.r-project.org/search.html
8http://rdrr.io
9http://cran.r-project.org/web/views/

http://cran.r-project.org/search.html
http://rdrr.io
http://cran.r-project.org/web/views/
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13.3 Loading a package

To make functions and data from a package available to use, we
need to run the library() function.

library("utils")

The library() function accepts a vector of length 1, so you need to
perform multiple calls to the function to load up multiple packages.

library("utils")
library("stats")

Once a package is loaded, you can then use any of its functions.

You can find what functions are available in a package by looking
at it’s help page.

Alternatively, you can type the package’s name and hit Tab. This
auto-completes the package’s name, adds two colons (::) and then
shows the list of available functions for that package. The double
colon trick is very helpful for when you want to browse package
functionality.

utils::find()

 

 

Any function in R can be prefixed with its package name and
the double colon (::) - this is great for telling people where
functions are coming from and for tracking dependencies in
long scripts.

13.4 Learning how to use a package

R documentation is some of the best out there.

Yes, I will complain about the impenetrable statistical jargon some
package authors use, but the CRAN gatekeepers require that pack-
ages generally have a really high standard of documentation.
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Every function you use will have a help page associated with it.
This page usually contains a description, shows what parameters
the function has, what those parameters are, and most importantly,
there’s usually examples.

To navigate to the help page of an individual function in an R
package you:

• Hit F1 on a function name in a script
• Type ??fnName and send to the console

`?`(`?`(mean))

• Search in the Help tab
• Use the help() function to open up the packages index page

and navigate to the relevant function

help(package = "utils")

• Find the relevant package in the Packages tab and click on
it. Scroll through the index that opens up on the Help page
to find the right function

As well as the function level documentation, good packages also
provide a higher level of documentation that covers workflows using
the packages, how to extend package functionality, or outlines any
methodologies or research that led to the package.

These pieces of documentation are called vignettes. They are
accessible on the package’s index page or you can use the function
vignette() to read them.

vignette("multi")

13.5 Summary

R packages bundle functionality and/or data.

You can install packages from the central public repository (CRAN)
via install.packages() or install them from GitHub with the
package devtools. R packages contain documentation that helps
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you understand how functions work and how the package overall
works.

When you want to make use of functionality from a package you can
either load all of a package’s functionality by using the library()
function or refer to a specific function by prefixing the function with
the package name and two colons (::) e.g. utils::help("mean").

There are many packages out there for different activities and
domain-specific types of analysis. Use online search facilities like
rdrr.io10 or CRAN task views11 to find ones specific to your re-
quirements.

13.6 R packages Exercises

1. Install datasauRus
2. Load the library datasauRus
3. Browse datasauRus’s help pages
4. Read the datasauRus vignette

10http://rdrr.io
11http://cran.r-project.org/web/views/

http://rdrr.io
http://cran.r-project.org/web/views/
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Conclusion
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Chapter 14

Conclusion

You’ve reached he end of this first book in the series on R funda-
mentals. Thank you for reading!

In this book you learnt how to:

• effectively use your RStudio environment
• perform basic tasks like importing data, subsetting and ex-

ploring data, and
• use R functions and new packages

The next book will tackle data manipulation and tabular based
analysis, the next step in getting to grips with the fundamentals of
R.
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Appendix A

Answers

A.1 R Data Types Exercises

• Convert TRUE to an integer

as.integer(TRUE)

## [1] 1

• What is the datatype of the value returned by Sys.time()?

class(Sys.time())

## [1] "POSIXct" "POSIXt"

• What is the datatype of the value returned by Sys.timezone()?

class(Sys.timezone())

## [1] "character"

• Make this quote into an R string > “Do you think this is
a game?”, he said. “No I think Jenga’s a game”, Archer
responded.

125
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'"Do you think this is a game?", he said.
"No I think Jenga\'s a game", Archer responded.'

## [1] "\"Do you think this is a game?\", he said. \n \"No
I think Jenga's a game\", Archer responded."

A.2 Basic Operations Exercises

• What is the result of pi^2?

pi^2

## [1] 9.869604

• Is pi greater than 3?

pi > 3

## [1] TRUE

• Construct a statement to check if 5 is both greater than 3
and less than or equal to 6

(5 > 3) & (5 <= 6)

## [1] TRUE

• What are the results if you check to see if a sequence of 1 to
5 is less than or equal to 3?

1:5 <= 3

## [1] TRUE TRUE TRUE FALSE FALSE

A.3 R Objects Exercises

• See what’s in the built-in variable letters
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letters

## [1] "A" "B" "C" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m"
"n" "o" "p" "q"
## [18] "r" "s" "t" "u" "v" "w" "x" "y" "z" "|"

• Write a check to see if “A” is present in letters

"A" %in% letters

## [1] TRUE

• Find out which values in the sequence 1 to 10 are greater
than or equal to 3 and less than 7.

myseq <- 1:10
myseq >= 3 & myseq < 7

## [1] FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE
FALSE

• Make a vector containing the numbers 1 to 50;

fifty <- 1:50

• Make a vector containing two words;

words <- c("fifty", "words")

• What happens when you combine these two vectors?

c(fifty, words)
# the numbers get converted to text

## [1] "1" "2" "3" "4" "5" "6" "7" "8"
## [9] "9" "10" "11" "12" "13" "14" "15" "16"
## [17] "17" "18" "19" "20" "21" "22" "23" "24"
## [25] "25" "26" "27" "28" "29" "30" "31" "32"
## [33] "33" "34" "35" "36" "37" "38" "39" "40"
## [41] "41" "42" "43" "44" "45" "46" "47" "48"
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## [49] "49" "50" "fifty" "words"

• Make a data.frame using the two vectors

fiftywords <- data.frame(fifty, words)

• What happened to your text vector?

# It got recycled 25 times

• Make a list containing some of the variables you’ve created
so far.

list(fifty, words, fiftywords)

## [[1]]
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
21 22 23
## [24] 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46
## [47] 47 48 49 50
##
## [[2]]
## [1] "fifty" "words"
##
## [[3]]
## fifty words
## 1 1 fifty
## 2 2 words
## 3 3 fifty
## 4 4 words
## 5 5 fifty
## 6 6 words
## 7 7 fifty
## 8 8 words
## 9 9 fifty
## 10 10 words
## 11 11 fifty
## 12 12 words
## 13 13 fifty
## 14 14 words
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## 15 15 fifty
## 16 16 words
## 17 17 fifty
## 18 18 words
## 19 19 fifty
## 20 20 words
## 21 21 fifty
## 22 22 words
## 23 23 fifty
## 24 24 words
## 25 25 fifty
## 26 26 words
## 27 27 fifty
## 28 28 words
## 29 29 fifty
## 30 30 words
## 31 31 fifty
## 32 32 words
## 33 33 fifty
## 34 34 words
## 35 35 fifty
## 36 36 words
## 37 37 fifty
## 38 38 words
## 39 39 fifty
## 40 40 words
## 41 41 fifty
## 42 42 words
## 43 43 fifty
## 44 44 words
## 45 45 fifty
## 46 46 words
## 47 47 fifty
## 48 48 words
## 49 49 fifty
## 50 50 words

• Return the some rows from the iris dataset
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head(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
5.1 3.5 1.4 0.2 setosa
4.9 3.0 1.4 0.2 setosa
4.7 3.2 1.3 0.2 setosa
4.6 3.1 1.5 0.2 setosa
5.0 3.6 1.4 0.2 setosa
5.4 3.9 1.7 0.4 setosa

A.4 Data manipulation exercises

• Select all LETTERS before “X”;

LETTERS[LETTERS < "X"]

## [1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M"
"N" "O" "P" "Q"
## [18] "R" "S" "T" "U" "V" "W"

• Select the first 5 rows from the built-in data.frame iris;

iris[1:5, ]

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
5.1 3.5 1.4 0.2 setosa
4.9 3.0 1.4 0.2 setosa
4.7 3.2 1.3 0.2 setosa
4.6 3.1 1.5 0.2 setosa
5.0 3.6 1.4 0.2 setosa

• Select the first 2 columns from iris;

head(iris[, 1:2])
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Sepal.Length Sepal.Width
5.1 3.5
4.9 3.0
4.7 3.2
4.6 3.1
5.0 3.6
5.4 3.9

• Select the column Sepal.Length from iris by name.

head(iris[, "Sepal.Length"])

## [1] 5.1 4.9 4.7 4.6 5.0 5.4

• Select rows from the iris data.frame where the Sepal.Length
is greater than 5.8cm;

head(iris[iris$Sepal.Length > 5.8, ])

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
51 7.0 3.2 4.7 1.4 versicolor
52 6.4 3.2 4.5 1.5 versicolor
53 6.9 3.1 4.9 1.5 versicolor
55 6.5 2.8 4.6 1.5 versicolor
57 6.3 3.3 4.7 1.6 versicolor
59 6.6 2.9 4.6 1.3 versicolor

• Select rows from the iris data.frame where the Sepal.Width
is below the average for that column.

head(iris[iris$Sepal.Width < mean(iris$Sepal.Width), ])

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
2 4.9 3.0 1.4 0.2 setosa
9 4.4 2.9 1.4 0.2 setosa
13 4.8 3.0 1.4 0.1 setosa
14 4.3 3.0 1.1 0.1 setosa
26 5.0 3.0 1.6 0.2 setosa
39 4.4 3.0 1.3 0.2 setosa
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• Select everything from iris except the Species column;

head(iris[, -5])

Sepal.Length Sepal.Width Petal.Length Petal.Width
5.1 3.5 1.4 0.2
4.9 3.0 1.4 0.2
4.7 3.2 1.3 0.2
4.6 3.1 1.5 0.2
5.0 3.6 1.4 0.2
5.4 3.9 1.7 0.4

• Create a copy of the iris data that just contains the first
100 rows and call it myIris;

myIris <- iris[1:100, ]

• Update the species column to the value “Unknown” in
myIris;

myIris$Species <- "Unknown"

• Delete rows from myIris where the sepal length is greater
than 5.5.

myIris <- myIris[myIris$Sepal.Length <= 5.5, ]

A.5 R functions Exercises

1. Use pmin() to find the smallest values element-wise of the
three vector 1:51, 25:75, 30:-20

pmin(1:51, 25:75, 30:-20)

## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 14
## [18] 13 12 11 10 9 8 7 6 5 4 3 2 1 0 -1 -2 -3
## [35] -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17
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-18 -19 -20

• Use paste() to combine the upper case letters into a single
string with ", " between each letter

paste(LETTERS, collapse = ", ")

## [1] "A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q,
R, S, T, U, V, W, X, Y, Z"

• Use list.files() to see what files are in your current direc-
tory. Return the fully qualified names not just the filenames.

list.files(full.names = TRUE)

• View the code for ncol() and work out how the number of
columns is being determined.

ncol

# ncol performs the `dim()` function on the
# object we pass in. This returns a vector
# of length 2. We then subset to the second
# element, which is the number of columns.

## function (x)
## dim(x)[2L]
## <bytecode: 0x000000001d5d2c18>
## <environment: namespace:base>

A.6 R packages Exercises

• Install datasauRus

install.packages("datasauRus")

• Load the library datasauRus;



134 APPENDIX A. ANSWERS

library(datasauRus)

• Browse datasauRus’s help pages;

help(package = "datasauRus")

• Read the datasauRus vignette;

vignette("Datasaurus")
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