
Data Manipulation in R
Steph Locke (Locke Data)

Contents

About this book 7
Feedback . 8

Conventions 9

Prequisites 11
What you need to already know 11
System requirements . 11

About the author 13
Steph Locke . 13
Locke Data . 13

Acknowledgements 15

tidyverse 17

1 Getting data 19
1.1 Rstudio import wizard 19
1.2 CSVs . 20
1.3 Spreadsheets . 22
1.4 Advanced reading of data 23
1.5 Databases . 25
1.6 Summary . 27

2 Data pipelines 29
2.1 About piping in R 30
2.2 Simple usage . 31
2.3 Assigning results . 32
2.4 Jumbled functions 33
2.5 Summary . 33

3

4 CONTENTS

2.6 Exercises . 34

3 Filtering columns 35
3.1 Basic selections . 35
3.2 Name-based selection 38
3.3 Content based selection 39
3.4 Advanced conditional selection 40
3.5 Summary . 42
3.6 Exercises . 42

4 Filtering rows 43
4.1 Row-position selection 43
4.2 Conditional selection 44
4.3 Advanced row filtering 45
4.4 Summary . 49
4.5 Exercises . 49

5 Working with names 51
5.1 Working with column names 51
5.2 Advanced renaming columns 52
5.3 Working with row names 53
5.4 Summary . 54
5.5 Exercises . 55

6 Re-arranging your data 57
6.1 Sorting rows . 57
6.2 Advanced row sorting 58
6.3 Reordering columns 59
6.4 Summary . 60
6.5 Exercises . 60

7 Changing your data 61
7.1 Useful functions . 64
7.2 Advanced data changes 67
7.3 Summary . 68
7.4 Exercises . 69

8 Working with dates and times 71
8.1 Date conversions . 71
8.2 Date components . 72
8.3 Date arithmetic . 74
8.4 Date formatting . 77
8.5 Common tasks . 78

CONTENTS 5

8.6 Summary . 80
8.7 Exercises . 81

9 Working with text 83
9.1 Strings . 83
9.2 Factors . 90
9.3 Summary . 93
9.4 Exercises . 94

10 Summarising data 95
10.1 Producing summaries 95
10.2 Aggregate functions 96
10.3 Advanced aggregations 96
10.4 Summarising by groups 97
10.5 Advanced grouping 100
10.6 Summary . 102
10.7 Exercises . 102

11 Combining datasets 103
11.1 Joining two tables to make a wider table 103
11.2 Joining two tables to make a longer table 112
11.3 Summary . 114
11.4 Exercises . 115

12 Reshaping data 117
12.1 Unpivoting data . 118
12.2 Pivoting data . 120
12.3 String splitting revisited 121
12.4 Summary . 122
12.5 Exercise . 123

13 Getting data out of R 125
13.1 CSVs . 125
13.2 Spreadsheets . 126
13.3 Databases . 127
13.4 Summary . 128
13.5 Exercises . 128

14 Putting it all together 129
14.1 Working with the flights data 130
14.2 Working with the gapminder data 135
14.3 Exercises . 139

6 CONTENTS

15 Conclusion 141
15.1 The tidyverse . 141
15.2 Stepping through the workflow 142
15.3 Thank you . 142

16 Answers 143
16.1 Piping . 143
16.2 Filtering columns . 144
16.3 Filtering rows . 145
16.4 Working with names 146
16.5 Re-arranging your data 147
16.6 Changing your data 148
16.7 Working with dates 149
16.8 Working with strings 150
16.9 Summarising data 151
16.10Combining datasets 152
16.11Reshaping data . 154
16.12Getting data out of R 155
16.13Putting it all together 156

About this book

Welcome to the second book in Steph Locke’s R Fundamentals
series! This second book takes you through how to do manipulation
of tabular data in R.

Tabular data is the most commonly encountered data structure we
encounter so being able to tidy up the data we receive, summarise
it, and combine it with other datasets are vital skills that we all
need to be effective at analysing data.

This book will follow the data pipeline from getting data in to R,
manipulating it, to then writing it back out for consumption. We’ll
primarily be using capabilities from the set of packages called the
tidyverse1 within the book.

The book is aimed at beginners to R who understand the basics
(check out the Prerequisites) but if you’re coming from a coding
background or coming back to this book after using R for a while,
there is advanced content in many of the chapters. The advanced
sections are entirely optional so don’t worry if you’re just starting
to learn R – you don’t need those bits just yet but will super-charge
your skills when you’re ready for them.

Data Manipulation in R by Stephanie Locke is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 In-

1http://tidyverse.org

Figure 1

7

http://tidyverse.org

8 CONTENTS

ternational License.

Feedback

Please let me and others know what you thought of the book by
leaving a review on Amazon!

Reviews are vital for me as a writer since it provides me with extra
insight that I can apply to future books. Reviews are vital to other
people as it gives insight into whether the book is right for them.

If you want to provide feedback outside of the review mechanism
for things like errata, suggested future titles etc. you can. Use
bit.ly/ldbookfeedback2 to provide us with information.

2http://bit.ly/ldbookfeedback

http://bit.ly/ldbookfeedback

Conventions

Throughout this book various conventions will be used.

In terms of basic formatting:

• This is standard text.
• This is code or a symbol
• Keyboard keys will be shown like Ctrl + + F ctrl + shift

+ F
• This is the first time I mention something important

This is a book about coding, so expect code blocks. Code blocks
will typically look like this:

"this is a code block"

Directly underneath it, normally starting with two hash symbols
(##) is the result of the code executing.

[1] "this is a code block"

There will also be callouts throughout the book. Some are for
information, some expect you to do things.

Anything written here should be read carefully before pro-
ceeding.

This is a tip relating to what I’ve just said.

9

10 CONTENTS

This is kind of like a tip but is for when you’re getting into
trouble and need help.

This is something I recommend you do as you’re reading.

This let’s you know that something I mention briefly will be
followed up on later, whether in this book or a later one.

If you’re reading the book in print format, there are often blank
pages between chapters – use these to keep notes! The book is to
help you learn, not stay pristine.

Prequisites

What you need to already know

This book assumes knowledge of R that covers:

• using functions and packages
• working with vectors
• extracting data out of data.frames

You should be able to say what these lines of code mean:

• LETTERS[LETTERS>"J"]
• iris[, c("Sepal.Length","Species")]
• iris$Avg.Petal.Width <- mean(iris$Petal.Width)
• list(element=LETTERS)[["element"]]

If any of the above terms or code are unfamiliar, I recommend you
read the first book in the series, Working with R3.

A basic knowledge of data wrangling will come in handy, but isn’t
required. You will find this book particularly easy to understand
if you can write SQL.

System requirements

You will need R, RStudio, and, if on Windows, Rtools. You can
code online at r-fiddle.org4 but this might be unreliable.

3http://geni.us/workingwithr
4http://www.r-fiddle.org/

11

http://geni.us/workingwithr
http://www.r-fiddle.org/

12 CONTENTS

• Install R from r-project.org5

• Install Rtools from r-project.org6

• Install RStudio from rstudio.com7

You should also install the following packages for R:

• tidyverse
• ggplot2movies
• nycflights13
• odbc
• writexl
• openxlsx
• gapminder

install.packages(c("tidyverse","ggplot2movies",
"nycflights13","odbc",
"writexl", "openxlsx",
"gapminder"))

5https://cloud.r-project.org/
6https://cloud.r-project.org/bin/windows/Rtools/
7https://www.rstudio.com/products/rstudio/download/#download

https://cloud.r-project.org/
https://cloud.r-project.org/bin/windows/Rtools/
https://www.rstudio.com/products/rstudio/download/#download

About the author

Steph Locke

I am a Microsoft Data Platform MVP with over a decade of busi-
ness intelligence and data science experience.

Having worked in a variety of industries (including finance, utilities,
insurance, and cyber-security,) I’ve tackled a wide range of business
challenges with data. I was awarded the MVP Data Platform award
from Microsoft, as a result of organising training and sharing my
knowledge with the technical community.

I have a broad background in the Microsoft Data Platform and
Azure, but I’m equally conversant with open source tools; from
databases like MySQL and PostgreSQL, to analytical languages
like R and Python.

Follow me on Twitter via @SteffLocke

Locke Data

I founded Locke Data, an education focused consultancy, to help
people get the most out of their data. Locke Data aims to help
organisations gain the necessary skills and experience needed to
build a successful data science capability, while supporting them
on their journey to better data science.

Find out more about Locke Data at itsalocke.com8.

8https://itsalocke.com/company/aboutus/

13

https://itsalocke.com/company/aboutus/

Acknowledgements

This book could not be possible without the skills of Oz Locke. My
husband he may be, but most importantly he’s a fantastic editor
and graphic designer.

I’d like to thank Lise Vaudor for allowing me to include some
of her fantastic graphics. Check out her stuff at perso.ens-
lyon.fr/lise.vaudor9.

As well as Oz and Lise, the book would be nowhere as good as it
is without the thoughtful feedback provided by these great people:

• Robert Pressau
• Alyssa Columbus
• Dmytro (@dmi3k)
• Paula Jennings
• Jacob Barnett
• Nico Botes

Any errors are my own but Oz and my feedback group have helped
me make substantially less of them. Thank you!

9http://perso.ens-lyon.fr/lise.vaudor/

15

http://perso.ens-lyon.fr/lise.vaudor/

tidyverse

This book uses tidyverse functionality almost exclusively. The
tidyverse is a collection of packages that share common interface
standards and expectations about how you should structure and
manipulate your data.

This has advantages because you can spend more time on the con-
cepts and less time working out syntax. It is tremendously powerful
for analysts and I think it is a great starting point for people new
to coding.

It would be remiss of me to not point out its disadvantages.
The guiding ethos emphasises readability not performance. The
tidyverse performs well for the majority of analytical purposes,
however, it may not be fast enough for a particularly demanding
production system. In such cases, there is usually a solution out
there in base R or another package that will execute faster. If
you need high performance R code, you will need to advance
beyond this book and I would recommend you read Efficient R
Programming10 by Colin Gillespie. The other significant issue
is that the tidyverse is expanding11 and evolving – techniques
included in the book may be superseded by newer techniques. The
Kindle version will stay up to date so if you’ve got the book in
print, don’t forget you can get the Kindle version for free.

Packages from the tidyverse that we’ll be using throughout are:

• readr and readxl provide connections to files
• DBI provides the basic interface to databases

10http://geni.us/effrprog
11Pun intended!

17

http://geni.us/effrprog

18 CONTENTS

• magrittr gives the ability to build data pipelines that are
very readable

• dplyr provides the core tabular manipulation syntax
• tidyr allows us to pivot and unpivot our data
• stringr, forcats, and lubridate help us work with text

and date columns
• purrr helps us work with lists and we’ll use this to help do

nifty stuff along the way

library(tidyverse)

Chapter 1

Getting data

This chapter will take you through some of the core packages that
allow you to get data into R. It is not exhaustive as there are huge
amounts of file types, systems, and APIs that R can work with.
There will be a more exhaustive book on this later, but for now I
want to get you up to speed with some of the most common data
stores.

1.1 Rstudio import wizard

A way to get started importing data from different sources is to use
RStudio’s import wizard. You can use it to prepare your import
and then grab the code to be able to reproduce it later.

To import data…

1. Go to the Environment tab and select Import Dataset
2. Select the relevant type of data you want to import
3. Browse to the file you want to upload.

Keeping data in the project directory is ideal as it keeps every-
thing in one place and makes imported code easier to read.

19

20 CHAPTER 1. GETTING DATA

1.2 CSVs

The core package we can use for working with CSVs is readr, which
is loaded by default when we load the tidyverse. readr is useful
for CSVs but it’s also good for other flat file formats so if CSV isn’t
quite what you need, there are also read and write functions for:

• any text file
• log files
• tab or some other delimited file

library(readr)

If you have a heavily restricted environment, you may need to
make do without being able to use readr. In such a situation,
you can use read.csv() and write.csv(), however these are
slower and have defaults that mean you usually need to do
some tweaking and therefore write more code.

If you have to read or write a lot of data (think hundreds
of thousands of records) then you may want to consider the
package data.table for its fwrite() and fread() functions
that are high performance read and write functions.

The function for reading a CSV is read_csv() and by default you
only need to provide a file name.

read_csv() will try to detect the correct data types for data in
the CSV and read the data into a data.frame such that it matches
those best guesses. Note that read_csv() does not automatically
assign the resulting dataset into memory so you need to assign it
into memory.

iris2 <- read_csv("iris.csv")

Parsed with column specification:
cols(
Sepal.Length = col_double(),
Sepal.Width = col_double(),
Petal.Length = col_double(),
Petal.Width = col_double(),

1.2. CSVS 21

Species = col_character()
)

Arguments that you can use if you need to tweak the settings are:

• col_names means that you can provide (alternative) column
names for the resulting data.frame.

– If you’re making alternatives make sure to set the skip
argument so that it ignores existing header rows.

• col_types allows to define the datatypes instead of relying
on readr determining them.

– readr contains a number of col_*() functions that al-
low you to assess what datatype a column should be.

– A great place to start is with the column specification
that gets printed out as a message when you read in the
CSV as this tells you the starting setup.

• locale allows you to specify a different locale using locale()
so that you can read in data with commas as decimal marks
for instance.

• na allows you to provide a vector of values that you want
converted to NA in your dataset.

• quoted_na is a boolean set by default to TRUE such that if
it sees "NA" in a CSV it will read that as an NA not the string
"NA".

• quote allows to provide the string delimiter if it’s not the
standard speech mark.

• comment allows you to handle situations where people have
put comments in CSVs.

• trim_ws will remove excess white space at the beginning and
end of values and is defaulted to TRUE.

• skip says how many lines to skip when reading the data in.
This is useful when you want to skip the header row or the
data doesn’t start at line 1.

• n_max provides a limit as to the number of rows that will be
read by read_csv(). The default is to read all the rows.

• guess_max provides read_csv() with the number of rows
(from the top of the file) it should be used to determine
datatype. The default is a thousand records.

• progress will give progress updates if the dataset is large
in an interactive setting like running some code in RStudio.
You can set it FALSE to prevent excess messages.

22 CHAPTER 1. GETTING DATA

iris2<-read_csv("iris.csv",
col_names = c("sepal_length","sepal_width",
"petal_length","petal_width",
"species"),

skip=1)

Parsed with column specification:
cols(
sepal_length = col_double(),
sepal_width = col_double(),
petal_length = col_double(),
petal_width = col_double(),
species = col_character()
)

sepal_length sepal_width petal_length petal_width species
5.1 3.5 1.4 0.2 setosa
4.9 3.0 1.4 0.2 setosa
4.7 3.2 1.3 0.2 setosa
4.6 3.1 1.5 0.2 setosa
5.0 3.6 1.4 0.2 setosa
5.4 3.9 1.7 0.4 setosa

You can alternatively use read_delim(), read_csv2, or
read_tsv() for similarly structured data but with different
delimiters.

1.3 Spreadsheets

The best way to read spreadsheets at the moment is with the
readxl package, that is part of thetidyverse. It will work with
both “.xls” and “.xlsx” files which is great because there are still
tools and processes spitting out files with “.xls” extensions a decade
after it went out of use in Microsoft Office.

library(readxl)

The read_excel() function will find a table of data on the first
sheet of a workbook. This means it’ll ignore most headers and give

1.4. ADVANCED READING OF DATA 23

a good read experience straight away.

iris2 <- read_excel("iris.xlsx")

You can specify the sheet to read data from using the sheet argu-
ment. You may want to first get a list of sheets you might need to
read from. readxl provides excel_sheets() for this task.

excel_sheets("iris.xlsx")

[1] "Sheet1"

The read_excel() function’s optional arguments are very similar
to those of read_csv() so I won’t repeat them. The main difference
of note is that read_excel() will also accept a range argument so
that you can specify a range (including a sheet name) of cells to
read.

iris2 <- read_excel("iris.xlsx",
col_names = c("sepal_length","sepal_width",
"petal_length","petal_width",
"species"),
skip=1)

sepal_length sepal_width petal_length petal_width species
5.1 3.5 1.4 0.2 setosa
4.9 3.0 1.4 0.2 setosa
4.7 3.2 1.3 0.2 setosa
4.6 3.1 1.5 0.2 setosa
5.0 3.6 1.4 0.2 setosa
5.4 3.9 1.7 0.4 setosa

1.4 Advanced reading of data

Sometimes, we don’t just want to read data from one file, tab, or
table but multiple files, tabs, or tables. In such circumstances, we
might not even know the names of all the files we want to work
with or there may be too many names to work with. Reading and
combining that data could be tough were it not for purrr.

24 CHAPTER 1. GETTING DATA

purrr contains functions that allow us to work with lists. In prac-
tice we can handle anything as a list including a vector of filenames,
for instance. The map() function and type-specific variants come
in very handy as they allow us to run another function against each
element in our list.

This means that we can use map() to apply one of the functions
for reading in data against every file so that all files get read into
memory. If all the results are tabular then we can even the use the
data.frame specific version of map(), map_df(), to immediately
collapse everything into one big dataset.

map() and map_df() take two key inputs. The first is the list (or
vector) that we want to process. The second is the name of the
function we want to run against each item in the list. The function
name doesn’t need brackets after it as purrr will grab the code for
the function and execute it for us. We only need brackets when
we’re going to execute the function ourselves.

Super handily for us, the map_df() function will also cope with dif-
ferent column names and data types when it combines them. Data
gets matched by column name1 and where there’s not a match a
new column will be made. If the column datatypes change over files
then the column will end up as safest column type for all the data
encountered. This makes this technique excellent for combining
data that could vary.2

map_df(
list.files(pattern="*.csv"),
read_csv)

1So provide column names if you have a default set you always want adhered
to

2If you’ve used ETL tools like SQL Server Integration Services you’ll know
that such tools usually have a fixed metadata concept so new or missing
columns can really break things. R is much better for dynamic ETL challenges
I’ve found.

1.5. DATABASES 25

Sepal.Width Petal.Length Petal.Width Species Sepal.Length
3.5 1.4 0.2 setosa NA
3.0 1.4 0.2 setosa NA
3.2 1.3 0.2 setosa NA
3.1 1.5 0.2 setosa NA
3.6 1.4 0.2 setosa NA
3.9 1.7 0.4 setosa NA

1.5 Databases

DBI provides an interface for working with lots of different
databases. There’s a lot of change right now that’s seeing many
R packages that work with specific databases being overhauled.
Instead of using a specific database package, I like to use the odbc
package these days as most databases have an ODBC driver.

The RStudio site on working with databases is pretty nifty!
db.rstudio.com

library(DBI)
library(odbc)

To work with a database you’ll need a copy of the ODBC driver
installed on your system. You can then use this to connect to
databases that are compatible with that driver. Here I’m going to
use the SQL Server ODBC Driver3 as it is cross-platform compat-
ible and Redgate4 provide a database that anyone can connect to
for practicing their SQL writing skills. When connecting to your
own database you typically need to know the following:

• exact driver name
• server name
• database name5

• login credentials
• port number that the database allows you connect over

3https://docs.microsoft.com/en-us/sql/connect/odbc/
download-odbc-driver-for-sql-server

4https://www.red-gate.com/
5The name of the specific database not whether it’s MySQL etc.

https://docs.microsoft.com/en-us/sql/connect/odbc/download-odbc-driver-for-sql-server
https://docs.microsoft.com/en-us/sql/connect/odbc/download-odbc-driver-for-sql-server
https://www.red-gate.com/

26 CHAPTER 1. GETTING DATA

You then need to feed these bits of information into the function
dbConnect() along with the R function that covers your driver –
in our case that’s simply odbc().

dbConn<-dbConnect(odbc(),
driver="ODBC Driver 13 for SQL Server",
server="mhknbn2kdz.database.windows.net",
database="AdventureWorks2012",
uid="sqlfamily",
pwd="sqlf@m1ly")

Once you have this connection object, you can then use it to inter-
face with the database.

If we want to write some SQL against the database to retrieve
some data, we use dbGetQuery() function which takes a database
connection object and some SQL in a string.

transactions <- dbGetQuery(
dbConn,
"select *
from Production.TransactionHistory")

You can also grab an entire table into R using dbFetchTable()6. If
the table is very large I would not recommend doing this and would
recommend dbGetQuery() instead as you can provide filters.

sqlfamily <- dbReadTable(dbConn, "SqlFamily")

If you need to work with databases and are not comfortable
writing SQL, I would recommend the package dbplyr. Us-
ing dbplyr you make a connection to a specific table in the
database and then use the techniques and functions you’ll
learn in the rest of the book to write code that dbplyr will
then translate into SQL that it will send to the database to
run.

6Subject to the limitation of working within the default schema at present.

1.6. SUMMARY 27

1.6 Summary

There are numerous packages for reading data from various sources.
In this brief chapter we covered how to read CSV, Excel, and a
database. The packages I recommend you get started with are
readr, readxl, DBI, and odbc. This chapter is rudimentary and
more in-depth coverage of working with these data sources and
others will be in a later book.

Chapter 2

Data pipelines

Once you have some the data, we next need to start processing it.
In the past, you would often see data pipelines that looked like:

The all-in-one
avg_area<-mean(iris$Sepal.Length[iris$Species=="setosa"]*

iris$Sepal.Width[iris$Species=="setosa"])

One assign at a time
is_setosa <- iris$Species=="setosa"
setosa <- iris[is_setosa,]
setosa_area <- setosa$Sepal.Length * setosa$Sepal.Width
avg_area <- mean(setosa_area)

The all-in-one approach is a set of nested functions and logic that
means you need to spend time finding the innermost actions and
work out from there. If you’ve used Excel you probably have flash-
backs to horribly complicated nested formulae!

Doing things in smaller steps and assigning them along the way
means we can see what’s going on more effectively. It’s very handy
for someone to read but all those assignments could make it very
difficult for us to work if we’re working with large datasets or a
small amount of memory.

Enter piping.

Piping allows us to create series of connected transformations that

29

30 CHAPTER 2. DATA PIPELINES

Figure 2.1

goes from the source to the destination. Instead of nesting func-
tions you hook them together like pieces of plumbing so that your
data passes through them and changes as it goes.

This has the benefit of nested functions in that it puts less things
into memory and it also has the benefit of the step by step assign ap-
proach as it doesn’t involve any nested functions. If you’ve written
bash, PowerShell, C# fluent, F# or other functional programming
languages you will find this easy to adopt.

2.1 About piping in R

The pipe operator was first designed and implemented in R by
Stefan Milton Bache in the package magrittr1. Created in 2014,
it is now very heavily used and its widest adoption has been within
the tidyverse. This book and many of the future ones will rely
heavily on packages in the tidyverse to help you write R code
that does awesome things.

When we write R code using pipes we’ll do things step by step and
refer to the pipe operator as then when we say it out loud e.g. “get
the iris data then filter to setosa records then create an area column
then calculate the average”.

To perform this piping we have a special operator, %>%2, that we
use between functions.3

1magrittr is named after René Magritte and plays on his piece of art called
The Treachery of Images.

2The short cut in RStudio is Ctrl + M Ctrl + M
3There are other pipe operators in the magrittr package but these are rarely

required in my experience.

2.2. SIMPLE USAGE 31

library(magrittr)

2.2 Simple usage

Let’s take some R code length(toupper(letters)) and translate
it into a pipeline. We work out what the innermost part is and
then work our way outwards. Doing this, we get:

1. Get the letters object
2. Apply the toupper() function to letters
3. Count the results using length()

In pipelines you put the starting object first and then apply the
functions sequentially with a pipe (%>%) between each one. A
pipeline can sit on a single line or be split out to show one in-
struction per line. As the pipe basically says “take what you’ve
calculated and pass it along” it handily makes it the first input
by default, so we don’t even have to do anything in a lot of cases
except keep adding functions to our pipeline.

letters %>%
toupper() %>%
length()

[1] 26

Now, let’s go the other way and translate a pipeline into nested
functions.

iris %>%
head() %>%
nrow()

[1] 6

1. Get the iris dataset
2. Take some rows from the top of the dataset
3. Count how many rows are in the subset

32 CHAPTER 2. DATA PIPELINES

This would be nrow(head(iris)). These are fairly trivial exam-
ples but we’ll see much bigger pipelines later.

2.3 Assigning results

Pipelines are compatible with assigning to memory in a variety of
ways. You can still assign using a left hand side (LHS) operator.

iris_filtered <- iris %>% head()

iris_filtered2 <- iris %>%
head()

However, because of the way data pipelines flow from top to bottom
and left to right it feels somewhat counter-intuitive to have the
output and input on the same line. As a result, when I use data
pipelines I make use of the right hand side (RHS) operator ->.

iris %>%
head() ->
iris_filtered3

Note that you do not have to use the brackets after a func-
tions’ name if you’re not providing any further inputs. This
would make your code shorter, but at the point of writing
this, such code will throw errors when you convert your code
into a package. Whilst it might be a long time between now
and when you write your first package, the habit of using
brackets will save you problems down the line.

These feel more natural to me and I’ll use them throughout. Like
most things in R, there is no single right way, but there’s definitely
my way!

2.4. JUMBLED FUNCTIONS 33

2.4 Jumbled functions

Sometimes functions that we encounter do not put the key input
as the first argument. Here are some examples:

The input vector is the last thing you supply to sub()
letterz <- sub("s","z", letters)

Statistical modelling functions usually take a
description of the model first before you provide
the training dataset
my_lm <- lm(Sepal.Width~Sepal.Length, iris)

By default, our pipelines will put our objects as the first input to a
function. To work with these jumbled functions we need a way to
tell our pipelines where to use our input instead of relying on the
defaults. The way we can do that is with a period (.). By using
this as a place holder for a given arguments input we can put our
data anywhere in a function. Our two examples thus become:

letters %>%
sub("s","z", .) ->
letterz

iris %>%
lm(Sepal.Width~Sepal.Length, .) ->
my_lm

2.5 Summary

Build data pipelines using the %>% operator that is available from
magrittr, tidyverse, or reimplemented in many R packages.

Pipelines put the results of the previous code into the first argument
of the next piece of code. The default behaviour can be modified
by using a . to denote where the input should go. Assigning
the results of a pipeline to an object can be done by using the ->
operator.

34 CHAPTER 2. DATA PIPELINES

2.6 Exercises

1. Write a pipeline that samples from the vector LETTERS
200 times and stores the result in a vector called
lots_of_LETTERS

2. Write a pipeline that provides upper-cased versions of the
column names of the dataset mtcars

Chapter 3

Filtering columns

To extract columns from our dataset, we can use the select()
function to provide instructions about which columns we want or
don’t want. select() takes a comma separated list of instructions.

3.1 Basic selections

The most basic select() is one where you comma separate a list
of columns you want included. If you need to refer to tricky column
names with spaces or other things that break the standard naming
conventions, you use back ticks (‘) to enclose the column name.

iris %>%
select(Species, Sepal.Length)

35

36 CHAPTER 3. FILTERING COLUMNS

Species Sepal.Length
setosa 5.1
setosa 4.9
setosa 4.7
setosa 4.6
setosa 5.0
setosa 5.4

If we have lots of columns we want to include but a few we want
to exclude, we can use a minus (-) before a column name to say to
exclude it.

iris %>%
select(-Species)

Sepal.Length Sepal.Width Petal.Length Petal.Width
5.1 3.5 1.4 0.2
4.9 3.0 1.4 0.2
4.7 3.2 1.3 0.2
4.6 3.1 1.5 0.2
5.0 3.6 1.4 0.2
5.4 3.9 1.7 0.4

We can provide a range of columns to return two columns and
everything in between. This uses syntax like generating a sequence
of numbers incrementing by 1 e.g. 1:5. These can be comma
separated too, and also work with referencing specific columns.

iris %>%
select(Sepal.Length:Petal.Length)

Sepal.Width Petal.Length Petal.Width
3.5 1.4 0.2
3.0 1.4 0.2
3.2 1.3 0.2
3.1 1.5 0.2
3.6 1.4 0.2
3.9 1.7 0.4

Using the minus symbol to exclude a column can also combine with

3.1. BASIC SELECTIONS 37

the range capability to exclude a range of columns.

iris %>%
select(-(Sepal.Length:Petal.Length))

Sepal.Length Species
5.1 setosa
4.9 setosa
4.7 setosa
4.6 setosa
5.0 setosa
5.4 setosa

Note that if you exclude a column and include it later in the same
select(), the column will not be excluded. If you exclude a col-
umn after including it in a select(), the column will be excluded.

iris %>%
select(-Species, Species)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
5.1 3.5 1.4 0.2 setosa
4.9 3.0 1.4 0.2 setosa
4.7 3.2 1.3 0.2 setosa
4.6 3.1 1.5 0.2 setosa
5.0 3.6 1.4 0.2 setosa
5.4 3.9 1.7 0.4 setosa

iris %>%
select(Sepal.Width, Species, -Species)

Sepal.Width
3.5
3.0
3.2
3.1
3.6
3.9

38 CHAPTER 3. FILTERING COLUMNS

3.2 Name-based selection

There are a number of helper functions that can allow us to include
(or exclude) columns based on their names.

• starts_with() will return columns where the string you pro-
vide is at the beginning of a column name

• ends_with() will return columns where the string you pro-
vide is at the end of a column name

• contains() will return columns where the string you provide
is anywhere in the column name

• num_range() will allow you to return columns with names
like “Sales 2014” through to “Sales 2017” by providing a pre-
fix and a numeric range you want to select

• matches() allows you to provide pattern that a column name
must conform to in order to be returned

• one_of() allows you to provide a vector of column names
(perhaps as a result of user input) that you would like to be
matched in their entirety

iris %>%
select(starts_with("S"))

Sepal.Length Sepal.Width Species
5.1 3.5 setosa
4.9 3.0 setosa
4.7 3.2 setosa
4.6 3.1 setosa
5.0 3.6 setosa
5.4 3.9 setosa

iris %>%
select(ends_with("s"))

3.3. CONTENT BASED SELECTION 39

Species
setosa
setosa
setosa
setosa
setosa
setosa

iris %>%
select(contains("Length"))

Sepal.Length Petal.Length
5.1 1.4
4.9 1.4
4.7 1.3
4.6 1.5
5.0 1.4
5.4 1.7

These can be used in select() statements with column names,
exclusions, and ranges.

iris %>%
select(Petal.Width:Species, -contains("Length"))

Petal.Width Species
0.2 setosa
0.2 setosa
0.2 setosa
0.2 setosa
0.2 setosa
0.4 setosa

3.3 Content based selection

You can also select columns based on the boolean results of func-
tions applied to the data in the columns. We can use select_if()
to supply some criteria that relates to the data. When we reference

40 CHAPTER 3. FILTERING COLUMNS

functions to be used by select_if() we don’t include brackets af-
ter the function names because select_if() needs to take the
function and apply it to every column.1

For instance, if we wanted all numeric columns from the iris
dataset we can use is.numeric() to check out each column of
data and return a boolean if the data is numeric or not.

iris %>%
select_if(is.numeric)

Sepal.Length Sepal.Width Petal.Length Petal.Width
5.1 3.5 1.4 0.2
4.9 3.0 1.4 0.2
4.7 3.2 1.3 0.2
4.6 3.1 1.5 0.2
5.0 3.6 1.4 0.2
5.4 3.9 1.7 0.4

3.4 Advanced conditional selection

Existing functions don’t always fit your requirements when you
want to specify which columns you want.

You can create conditional statements on the fly by using a tilde
(~) and then providing some code that results in a boolean. You
tell the statement where the column of data should go by using the
place holder symbol (.).

For instance, what if we wanted only numeric columns with a high
degree of variation? We use the ~ to say we’re writing a custom
condition and then do an AND that checks if the column is numeric
and if the number of unique values in the column is more than 30.

iris %>%
select_if(~is.numeric(.) & n_distinct(.)>30)

1By not including brackets we’re saying use the function denoted by this
name as opposed to instructing it to execute the function denoted by this
name.

3.4. ADVANCED CONDITIONAL SELECTION 41

Sepal.Length Petal.Length
5.1 1.4
4.9 1.4
4.7 1.3
4.6 1.5
5.0 1.4
5.4 1.7

If you’re going to reuse your condition in multiple situations, you
can extract it and use as_mapper() to turn some code you’ve al-
ready written into a function.2

is_v_unique_num <- as_mapper(
~is.numeric(.) & n_distinct(.)>30
)

This can be used in a standalone fashion or within your *_if()
functions.

is_v_unique_num(1:5)
is_v_unique_num(LETTERS)
is_v_unique_num(1:50)

[1] FALSE
[1] FALSE
[1] TRUE

iris %>%
select_if(is_highly_unique_number)

Sepal.Length Petal.Length
5.1 1.4
4.9 1.4
4.7 1.3
4.6 1.5
5.0 1.4
5.4 1.7

2If you haven’t already written the code then you have a great range of
choices including the more traditional way of specifying a function which is
function(){}. Function writing will be covered in a later book.

42 CHAPTER 3. FILTERING COLUMNS

3.5 Summary

We can produce subsets of columns from datasets very easily using
select() and variants like select_if().

select() allows us to refer to columns that we want to be included
or excluded in a variety of ways.

• Individual columns can be included using their names
• Exclude individual columns by prefixing the column name

with a -
• Refer to range of columns by using a : between the first and

last column you want retried
• Perform a string match to retrieve columns

– Use starts_with() to match columns based on what
they start with

– Use ends_with() to match columns based on what they
end with

– Use contains() to match columns based on if they con-
tain a string

– Use matches() to match columns based on a pattern
– Use one_of() to match columns based on a vector of

desired columns
– Use num_range() to match columns that have an incre-

menting numeric value in the name

Use select_if() to provide a condition based on the contents of
the column, not the name.

3.6 Exercises

1. Write a select() that gets from the movies data (from
ggplot2movies) the columns title through to votes, and
Action through to Short

2. Write a query that brings back the movies dataset without
any column that begins with r or m

3. [ADVANCED] Write a query that returns columns that have
a high degree of missing data (more than 25% of rows are
NA) from the movies dataset

Chapter 4

Filtering rows

Filtering out rows we don’t want in our data or selecting only the
ones we’re interested in for a given piece of analysis is important.
This section takes you through how to tackle these tasks.

4.1 Row-position selection

To select records from our datasets based on where they appear,
we can use the function slice(). The slice() function takes a
vector of values that denote positions. These can be positive values
for inclusion or negative values for exclusion.

iris %>%
slice(1:5)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
5.1 3.5 1.4 0.2 setosa
4.9 3.0 1.4 0.2 setosa
4.7 3.2 1.3 0.2 setosa
4.6 3.1 1.5 0.2 setosa
5.0 3.6 1.4 0.2 setosa

There’s a helpful function n(), which returns the row count, that
makes it easy to construct queries that are based on the number of
rows.

43

44 CHAPTER 4. FILTERING ROWS

iris %>%
slice(-(1:floor(n()/3)))

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
7.0 3.2 4.7 1.4 versicolor
6.4 3.2 4.5 1.5 versicolor
6.9 3.1 4.9 1.5 versicolor
5.5 2.3 4.0 1.3 versicolor
6.5 2.8 4.6 1.5 versicolor
5.7 2.8 4.5 1.3 versicolor

4.2 Conditional selection

It’s pretty rare that we want to just select by row number though.
Usually, we want to use some sort of logical statement. These filters
say which rows to include if they meet the condition in our logical
statement i.e. the condition evaluates to TRUE for the row. The
function we can use to select rows based on a logical statement is
filter().

iris %>%
filter(Species=="virginica")

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
6.3 3.3 6.0 2.5 virginica
5.8 2.7 5.1 1.9 virginica
7.1 3.0 5.9 2.1 virginica
6.3 2.9 5.6 1.8 virginica
6.5 3.0 5.8 2.2 virginica
7.6 3.0 6.6 2.1 virginica

Instead of needing to write multiple filter() commands, we can

4.3. ADVANCED ROW FILTERING 45

put multiple logical conditions inside a single filter() function.
You can comma separate conditions, which is equivalent to an
“AND”, or you can use the compound logical operators “AND” (&)
and “OR” (|) to construct more complex statements.

iris %>%
filter(Species == "virginica",

Sepal.Length > mean(Sepal.Length))

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
6.3 3.3 6.0 2.5 virginica
7.1 3.0 5.9 2.1 virginica
6.3 2.9 5.6 1.8 virginica
6.5 3.0 5.8 2.2 virginica
7.6 3.0 6.6 2.1 virginica
7.3 2.9 6.3 1.8 virginica

iris %>%
filter(Species == "virginica" |

Sepal.Length > mean(Sepal.Length))

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
7.0 3.2 4.7 1.4 versicolor
6.4 3.2 4.5 1.5 versicolor
6.9 3.1 4.9 1.5 versicolor
6.5 2.8 4.6 1.5 versicolor
6.3 3.3 4.7 1.6 versicolor
6.6 2.9 4.6 1.3 versicolor

4.3 Advanced row filtering

We can also apply a filter to each column. This enables you to
return only rows where the condition is TRUE for all columns (an
AND) or where the condition is TRUE for any of the columns (an
OR).

We can construct these using filter_all(), providing a condition
that will be calculated per column for each row, and a requirement

46 CHAPTER 4. FILTERING ROWS

about how many conditions need to have been met for a row to be
returned.

• Use the place holder (.) to indicate where a column’s values
should be used in a condition

• The place holder can be used multiple times in a condition
• If the condition must be TRUE for all columns, then we wrap

our condition in all_vars()
• If only one column needs to return a TRUE then we wrap it

in any_vars()

Let’s try out some examples to see the sorts of filters you can create
using these three functions.

• Return any row where a column’s value exceeds a specified
value

iris %>%
filter_all(any_vars(.>7.5))

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
7.6 3.0 6.6 2.1 virginica
7.7 3.8 6.7 2.2 virginica
7.7 2.6 6.9 2.3 virginica
7.7 2.8 6.7 2.0 virginica
7.9 3.8 6.4 2.0 virginica
7.7 3.0 6.1 2.3 virginica

• Find rows where any column’s value is more than two stan-
dard deviations away from the mean

iris %>%
filter_all(any_vars(abs(. - mean(.))>2*sd(.)))

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
5.8 4.0 1.2 0.2 setosa
5.7 4.4 1.5 0.4 setosa
5.2 4.1 1.5 0.1 setosa
5.5 4.2 1.4 0.2 setosa
5.0 2.0 3.5 1.0 versicolor
7.6 3.0 6.6 2.1 virginica

4.3. ADVANCED ROW FILTERING 47

If we wanted to do something like finding each row where every
numeric column’s value was smaller than average, we couldn’t write
something using filter_all() that would work as there’s a text
column and mean() doesn’t make sense for text. It would return
something that couldn’t be interpreted as TRUE and therefore our
expectation that all values must be TRUE would never be met.

iris %>%
filter_all(all_vars(. < mean(.)))

Sepal.Length Sepal.Width Petal.Length Petal.Width
4.9 3.0 1.4 0.2
4.4 2.9 1.4 0.2
4.8 3.0 1.4 0.1
4.3 3.0 1.1 0.1
5.0 3.0 1.6 0.2
4.4 3.0 1.3 0.2
4.5 2.3 1.3 0.3
4.8 3.0 1.4 0.3
4.9 2.4 3.3 1.0
5.0 2.0 3.5 1.0
5.7 2.6 3.5 1.0
5.5 2.4 3.7 1.0
5.0 2.3 3.3 1.0
5.1 2.5 3.0 1.1

Thankfully, there’s a function we can use that will apply a check
to each column first, before applying our filter to our rows. Using
filter_if() we can first provide a column-level condition, and
then provide our row-level condition. This enables us to select
which columns we want to apply our filter to. The first argument
to a filter_if() is the name of a function that will return a TRUE
or FALSE based on the column’s contents. The second argument
is the type of filter we’ve already written in our filter_all().

iris %>%
filter_if(is.numeric, all_vars(.<mean(.)))

48 CHAPTER 4. FILTERING ROWS

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
4.9 3.0 1.4 0.2 setosa
4.4 2.9 1.4 0.2 setosa
4.8 3.0 1.4 0.1 setosa
4.3 3.0 1.1 0.1 setosa
5.0 3.0 1.6 0.2 setosa
4.4 3.0 1.3 0.2 setosa

Sometimes, functions won’t already exist for use as column filters.
In those instances, we can use custom conditions by using a tilde
(~) and our data place holder (.).

iris %>%
filter_if(~is.numeric(.) & n_distinct(.)>30,

any_vars(.<mean(.)))

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
5.1 3.5 1.4 0.2 setosa
4.9 3.0 1.4 0.2 setosa
4.7 3.2 1.3 0.2 setosa
4.6 3.1 1.5 0.2 setosa
5.0 3.6 1.4 0.2 setosa
5.4 3.9 1.7 0.4 setosa

The final alternative is to apply some criteria to columns
that match some given name criteria. To do this, we provide
filter_at() with our column criteria in a similar fashion to
how we reference them in select() and then we provide the
filter condition we then want to apply. filter_at() expects us
to group our column selection criteria in one argument so we
have to put them in something that groups them together – the
mechanism is the function vars() which allows us to provide a
comma-separated set of column criteria.

iris %>%
filter_at(vars(ends_with("Length")),

all_vars(.<mean(.)))

4.4. SUMMARY 49

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
5.1 3.5 1.4 0.2 setosa
4.9 3.0 1.4 0.2 setosa
4.7 3.2 1.3 0.2 setosa
4.6 3.1 1.5 0.2 setosa
5.0 3.6 1.4 0.2 setosa
5.4 3.9 1.7 0.4 setosa

4.4 Summary

We can apply filters to our rows in our data set by position
using slice(), based on applying criteria to specific columns
using filter(), and programmatically using filter_all(),
filter_at(), and filter_if().

4.5 Exercises

1. Write a filter that gets all action movies from the movies
dataset via the ggplot2movies package

2. Write a filter that removes films lasting more than 6 hours
from the movies dataset

3. [ADVANCED] Write a filter that checks to see if any of the
films don’t have any genres flagged at all

Chapter 5

Working with names

5.1 Working with column names

You can rename columns by selecting them but providing a new
name on the left-hand side of an equals operator (=) when doing a
select(). This is useful if you want to filter columns and rename
at the same time.

iris %>%
select(sepal_width=Sepal.Width, species=Species)

sepal_width species
3.5 setosa
3.0 setosa
3.2 setosa
3.1 setosa
3.6 setosa
3.9 setosa

If, however, you want to retain all your columns but with some
renamed, you can use rename() instead. rename() will output all
columns with the names adjusted.

51

52 CHAPTER 5. WORKING WITH NAMES

iris %>%
rename(sepal_width=Sepal.Width, species=Species)

Sepal.Length sepal_width Petal.Length Petal.Width species
5.1 3.5 1.4 0.2 setosa
4.9 3.0 1.4 0.2 setosa
4.7 3.2 1.3 0.2 setosa
4.6 3.1 1.5 0.2 setosa
5.0 3.6 1.4 0.2 setosa
5.4 3.9 1.7 0.4 setosa

5.2 Advanced renaming columns

We can also perform column name changes programmatically by
using *_at(), *_if(), and *_all() versions of select() and
rename() to change some or all columns. Whether we change
some or all, we can provide a transformation function that will
alter column names based on some condition.

iris %>%
select_all(str_to_lower)

sepal.length sepal.width petal.length petal.width species
5.1 3.5 1.4 0.2 setosa
4.9 3.0 1.4 0.2 setosa
4.7 3.2 1.3 0.2 setosa
4.6 3.1 1.5 0.2 setosa
5.0 3.6 1.4 0.2 setosa
5.4 3.9 1.7 0.4 setosa

iris %>%
rename_if(is.numeric, str_to_lower)

5.3. WORKING WITH ROW NAMES 53

sepal.length sepal.width petal.length petal.width Species
5.1 3.5 1.4 0.2 setosa
4.9 3.0 1.4 0.2 setosa
4.7 3.2 1.3 0.2 setosa
4.6 3.1 1.5 0.2 setosa
5.0 3.6 1.4 0.2 setosa
5.4 3.9 1.7 0.4 setosa

iris %>%
rename_at(vars(starts_with("S")), str_to_lower)

sepal.length sepal.width Petal.Length Petal.Width species
5.1 3.5 1.4 0.2 setosa
4.9 3.0 1.4 0.2 setosa
4.7 3.2 1.3 0.2 setosa
4.6 3.1 1.5 0.2 setosa
5.0 3.6 1.4 0.2 setosa
5.4 3.9 1.7 0.4 setosa

5.3 Working with row names

Generally speaking you want to avoid creating or working with
data.frames that use row names. It makes sense for a matrix to
have row names that are meaningful as you wouldn’t want to add a
text column into your numeric matrix and force everything to text.
Encoding important information like IDs into an attribute risks it
getting lost or overwritten. We can avoid this risk by adding these
into a column. Once row names are converted to a column, if you
need to make any amendments you can use the techniques you’ll
learn later in this book.

The dataset mtcars is a dataset with a row per vehicle with the
row names containing the car make and model.

mtcars

54 CHAPTER 5. WORKING WITH NAMES

mpg cyl disp hp drat wt qsec vs
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0
Valiant 18.1 6 225 105 2.76 3.460 20.22 1

We can use the function rownames_to_column()1 to move the row
names into a column and we can (optionally) provide a name for
the new column.

mtcars %>%
rownames_to_column("car")

car mpg cyl disp hp drat wt qsec
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02
Datsun 710 22.8 4 108 93 3.85 2.320 18.61
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02
Valiant 18.1 6 225 105 2.76 3.460 20.22

5.4 Summary

Renaming columns can be performed by using rename() or as part
of your select() process. Both rename() and select() have
variants that allow you to amend column names programmatically.

When working with row names in tabular data, my recommenda-
tion is to make them into a column in order to be able to amend
them more easily. Use rownames_to_column() to do this.

1rownames_to_column() comes from the package tibble which is part of the
framework that a lot of the tidyverse packages rely upon. It gets loaded by
default when you load the tidyverse.

5.5. EXERCISES 55

5.5 Exercises

1. Output the movies dataset with the column budget changed
to budget_if_known

2. [ADVANCED] Write a query that returns from the movies
dataset columns that have a high degree of missing data
(more than 25% of rows are NA) and upper case all the output
column names

Chapter 6

Re-arranging your data

Rearranging a table is something I recommend for output and when
you need things ordered to be able to perform some sort of calcu-
lation like difference from previous year. Generally, I would keep
your data as-is for as a long as possible.

6.1 Sorting rows

To sort your rows, you can use the function arrange(). You pro-
vide arrange() with a comma separated list of columns you wish
to sort by, where the first column will be the one sorted, then the
second column sorted where the values in the first column are the
same, and so on. By default, arrange() sorts columns in ascend-
ing order i.e. from smallest to largest. To change the sort order to
descending for a column you put the function desc() around the
column name.

57

58 CHAPTER 6. RE-ARRANGING YOUR DATA

iris %>%
arrange(desc(Species), Sepal.Length)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
4.9 2.5 4.5 1.7 virginica
5.6 2.8 4.9 2.0 virginica
5.7 2.5 5.0 2.0 virginica
5.8 2.7 5.1 1.9 virginica
5.8 2.8 5.1 2.4 virginica
5.8 2.7 5.1 1.9 virginica

6.2 Advanced row sorting

You can also use arrange_all(), arrange_at(), and arrange_if()
to provide sorting on the all the data (from left to right) or to sort
by columns that meet criteria. You can provide these functions
with desc as the sort order behaviour you want applied.

iris %>%
arrange_all()

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
4.3 3.0 1.1 0.1 setosa
4.4 2.9 1.4 0.2 setosa
4.4 3.0 1.3 0.2 setosa
4.4 3.2 1.3 0.2 setosa
4.5 2.3 1.3 0.3 setosa
4.6 3.1 1.5 0.2 setosa

iris %>%
arrange_if(is.character, desc)

6.3. REORDERING COLUMNS 59

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
5.1 3.5 1.4 0.2 setosa
4.9 3.0 1.4 0.2 setosa
4.7 3.2 1.3 0.2 setosa
4.6 3.1 1.5 0.2 setosa
5.0 3.6 1.4 0.2 setosa
5.4 3.9 1.7 0.4 setosa

iris %>%
arrange_at(vars(Species, starts_with("P")), desc)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
7.7 2.6 6.9 2.3 virginica
7.7 3.8 6.7 2.2 virginica
7.7 2.8 6.7 2.0 virginica
7.6 3.0 6.6 2.1 virginica
7.9 3.8 6.4 2.0 virginica
7.3 2.9 6.3 1.8 virginica

6.3 Reordering columns

You can use the select() function to re-order columns.

If you want to move some known values you can use the
everything() function inside your select() to denote that you
want everything else brought back that hasn’t yet been mentioned.

iris %>%
select(starts_with("P"), everything())

Petal.Length Petal.Width Sepal.Length Sepal.Width Species
1.4 0.2 5.1 3.5 setosa
1.4 0.2 4.9 3.0 setosa
1.3 0.2 4.7 3.2 setosa
1.5 0.2 4.6 3.1 setosa
1.4 0.2 5.0 3.6 setosa
1.7 0.4 5.4 3.9 setosa

60 CHAPTER 6. RE-ARRANGING YOUR DATA

To sort alphabetically, we need to extract column names which
we can do using the function current_vars() and then sort the
names.

iris %>%
select(sort(current_vars()))

Petal.Length Petal.Width Sepal.Length Sepal.Width Species
1.4 0.2 5.1 3.5 setosa
1.4 0.2 4.9 3.0 setosa
1.3 0.2 4.7 3.2 setosa
1.5 0.2 4.6 3.1 setosa
1.4 0.2 5.0 3.6 setosa
1.7 0.4 5.4 3.9 setosa

6.4 Summary

Use arrange() to sort your dataset by known columns. Provide
desc() to denote when you want to columns to be sorted in de-
scending order. You can sort by all columns using arrange_all(),
arrange_at(), and use arrange_if() to sort by columns that
match some criteria. Use select() to reorder columns.

6.5 Exercises

1. Sort the movies data by title in descending order
2. [ADVANCED] Sort the movies data by columns containing

only two unique values

Chapter 7

Changing your data

This section will focus on how you can update, drop, and create
new columns. All of these changes do not occur to the underlying
dataset so if you want to update the dataset you need to overwrite
it.

To make changes, we mutate() our dataset. The mutate() func-
tion takes any number of expressions that take columns and return
new values of the same length.

The functions we use in the expressions need to work on vectors
and operate just like how they would behave if we were working on
the vector independently of the data.frame.1 If we put a name on
the LHS of an expression and an = between them, we give the new
column a name.

1The data.frame is a list where each element is an object with the same
number of elements as all the others. Consequently, whilst we usually have
simple vectors as columns, you can actually have list columns that contain
lists or data.frames. You can use mutate() to work with these types of columns
but they’re typically encountered when working with APIs do we’ll cover them
when we look at working with APIs in a later book.

61

62 CHAPTER 7. CHANGING YOUR DATA

iris %>%
mutate(Sepal.Area = Sepal.Width * Sepal.Length)

Sepal.Length Petal.Width Species Sepal.Area
5.1 0.2 setosa 17.85
4.9 0.2 setosa 14.70
4.7 0.2 setosa 15.04
4.6 0.2 setosa 14.26
5.0 0.2 setosa 18.00
5.4 0.4 setosa 21.06

When using mutate() you can create multiple new columns, some
of which depend on others being created at the same time. You
can also utilise column-level aggregates in your expressions.

iris %>%
mutate(Sepal.Area = Sepal.Width * Sepal.Length,
Avg.Sepal.Area = mean(Sepal.Area))

Sepal.Length Petal.Width Species Sepal.Area Avg.Sepal.Area
5.1 0.2 setosa 17.85 17.82287
4.9 0.2 setosa 14.70 17.82287
4.7 0.2 setosa 15.04 17.82287
4.6 0.2 setosa 14.26 17.82287
5.0 0.2 setosa 18.00 17.82287
5.4 0.4 setosa 21.06 17.82287

Updating a column involves using its name on the LHS of an assign.

iris %>%
mutate(Sepal.Width=Sepal.Width*.9)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
5.1 3.15 1.4 0.2 setosa
4.9 2.70 1.4 0.2 setosa
4.7 2.88 1.3 0.2 setosa
4.6 2.79 1.5 0.2 setosa
5.0 3.24 1.4 0.2 setosa
5.4 3.51 1.7 0.4 setosa

63

To delete a column, you can either assign NULL2 to a column in
a mutate() statement or use the exclude syntax for a select()
statement.

iris %>%
mutate(Sepal.Length=NULL)

Sepal.Width Petal.Length Petal.Width Species
3.5 1.4 0.2 setosa
3.0 1.4 0.2 setosa
3.2 1.3 0.2 setosa
3.1 1.5 0.2 setosa
3.6 1.4 0.2 setosa
3.9 1.7 0.4 setosa

iris %>%
select(-Sepal.Width)

Sepal.Length Petal.Length Petal.Width Species
5.1 1.4 0.2 setosa
4.9 1.4 0.2 setosa
4.7 1.3 0.2 setosa
4.6 1.5 0.2 setosa
5.0 1.4 0.2 setosa
5.4 1.7 0.4 setosa

New columns, updating existing ones, and dropping columns can
all be done in the same mutate() function and R will work out the
best order to evaluate the various instructions.

Just because you can do something all in one line, doesn’t
necessarily mean you should. It can improve readability if
you do multiple mutate() statements to increase clarity for
the reader. For instance, in the example below an unfamiliar
reader of your code and process would have to check the
values for Sepal.Area to see if they were based on the original
or adjusted Sepal.Width. Especially with work that does not

2This is very similar to what we covered in working with R where you can
do iris$Sepal.Width<-NULL to remove a column.

64 CHAPTER 7. CHANGING YOUR DATA

need to be highly efficient, it is almost always better to trade
off succinctness/elegance for readability/clarity.

iris %>%
mutate(Sepal.Area = Sepal.Width * Sepal.Length,
Avg.Sepal.Area = mean(Sepal.Area),
Sepal.Width=Sepal.Width*.9,
Sepal.Length=NULL)

Sepal.Width Species Sepal.Area Avg.Sepal.Area
3.15 setosa 17.85 17.82287
2.70 setosa 14.70 17.82287
2.88 setosa 15.04 17.82287
2.79 setosa 14.26 17.82287
3.24 setosa 18.00 17.82287
3.51 setosa 21.06 17.82287

7.1 Useful functions

R has lots of functions that you can make use of but I wanted to
call out some specific functions provided by the tidyverse that
can come in handy when creating new columns.

We can use row_number() to add an ID column to our data.

iris %>%
mutate(id=row_number())

Sepal.Length Sepal.Width Petal.Length Petal.Width Species id
5.1 3.5 1.4 0.2 setosa 1
4.9 3.0 1.4 0.2 setosa 2
4.7 3.2 1.3 0.2 setosa 3
4.6 3.1 1.5 0.2 setosa 4
5.0 3.6 1.4 0.2 setosa 5
5.4 3.9 1.7 0.4 setosa 6

We can get values from earlier or later rows with lag() and lead().
This is particularly useful for comparing values over time.

7.1. USEFUL FUNCTIONS 65

iris %>%
mutate(prev = lag(Sepal.Length),

future = lead(Sepal.Length))

Sepal.Length Petal.Width Species prev future
5.1 0.2 setosa NA 4.9
4.9 0.2 setosa 5.1 4.7
4.7 0.2 setosa 4.9 4.6
4.6 0.2 setosa 4.7 5.0
5.0 0.2 setosa 4.6 5.4
5.4 0.4 setosa 5.0 4.6

The case_when() allows us to write a multi-condition state-
ment without nesting lots of ifelse() statements. To write a
case_when() we provide a series of expressions that result in
a boolean response and then put the desired label after a tilde
(~). The label for the first expression that returns a TRUE gets
returned for each row in our dataset. To provide a value that
should be returned if no prior condition returns a TRUE, put
TRUE ~ "default label" as the final condition.

iris %>%
mutate(size = case_when(
Sepal.Length < mean(Sepal.Length) ~ "s",
Sepal.Length > mean(Sepal.Length) ~ "l",
TRUE ~ "m"

))

Sepal.Length Petal.Width Species size
5.1 0.2 setosa s
4.9 0.2 setosa s
4.7 0.2 setosa s
4.6 0.2 setosa s
5.0 0.2 setosa s
5.4 0.4 setosa s

The RHS of the tilde doesn’t have to be a fixed value, you can put
expressions on the RHS too so long as everything ends up the same
datatype.

66 CHAPTER 7. CHANGING YOUR DATA

iris %>%
mutate(Species = case_when(

Species == "setosa" ~ toupper(Species),
TRUE ~ as.character(Species)

))

Sepal.Length Petal.Width Species
5.1 0.2 SETOSA
4.9 0.2 SETOSA
4.7 0.2 SETOSA
4.6 0.2 SETOSA
5.0 0.2 SETOSA
5.4 0.4 SETOSA

There are extra cumulative functions that consider all the rows
before the present one. We already have cumsum(), cummin(),
cummax() and a few others from base R. tidyverse gives us:

• cumall() for checking a condition has been TRUE in every
prior row

• cumany() for checking a condition has been TRUE in any
prior row

• cummean() for getting the mean of all prior values

The cumall() and cumany() are especially useful for saying
whether things happened in the past, along with lag(), as you
often want to be able to create such measures as candidate
columns when building predictive models.

iris %>%
mutate(runagg=cumall(Sepal.Length<mean(Sepal.Length)))

Sepal.Length Petal.Width Species runagg
5.1 0.2 setosa FALSE
4.9 0.2 setosa FALSE
4.7 0.2 setosa FALSE
4.6 0.2 setosa FALSE
5.0 0.2 setosa FALSE
5.4 0.4 setosa FALSE

mutate() takes your data, applies the changes, and returns the

7.2. ADVANCED DATA CHANGES 67

updated dataset in its entirety. Occasionally, you might want to
return only the columns you want to change. In such a situation,
swap the word mutate for transmute.

iris %>%
transmute(Sepal.Width=floor(Sepal.Width),

Species = case_when(
Species == "setosa" ~ toupper(Species),
TRUE ~ as.character(Species)

))

Sepal.Width
3
3
3
3
3
3

7.2 Advanced data changes

Like the data manipulation aspects we’ve already covered,
mutate() has variants3 that allow us to perform more program-
matic changes to our data.

Using mutate_all() you can apply a function to every column.

iris %>%
mutate_all(as.character)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
5.1 3.5 1.4 0.2 setosa
4.9 3 1.4 0.2 setosa
4.7 3.2 1.3 0.2 setosa
4.6 3.1 1.5 0.2 setosa
5 3.6 1.4 0.2 setosa
5.4 3.9 1.7 0.4 setosa

3transmute() also has these variants.

68 CHAPTER 7. CHANGING YOUR DATA

If you want to change columns where they meet some sort of criteria
within the data, you can provide a criteria to mutate_if().

iris %>%
mutate_if(is.numeric, ~ . + rnorm(.))

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
5.801233 4.267989 1.7230783 0.0620613 setosa
4.715885 3.533855 1.7327162 -0.2847584 setosa
4.923484 2.255166 -1.3109879 0.6901706 setosa
5.201911 3.212612 0.3351221 1.7036441 setosa
5.006396 3.135057 1.8885374 0.2789089 setosa
6.924766 3.720268 1.2938308 0.2780320 setosa

To change columns with certain name conditions use the
mutate_at() variant.

iris %>%
mutate_at(vars(Sepal.Width:Petal.Width), ~ . + rnorm(.))

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
5.1 1.632160 1.5693524 0.1393836 setosa
4.9 2.146251 2.2281803 0.0000095 setosa
4.7 4.762896 -0.6887572 0.3965169 setosa
4.6 3.644356 2.4499652 0.7040535 setosa
5.0 5.181996 1.8891292 -1.3999117 setosa
5.4 1.532164 1.4173460 1.3201975 setosa

7.3 Summary

Use mutate() to create, update, or even delete columns from a
dataset. Inside a mutate() you can perform a mix of all three
actions. You can reference columns you’re making or updating
and R will evaluate those first. You can use mutate_all() to
apply an update to every column, mutate_at() to change columns
where the names meet some criteria, and mutate_if() to apply an
update to only columns that meet some specific criteria based on
the data.

7.4. EXERCISES 69

7.4 Exercises

1. Create an irisImperial dataset with the numeric measure-
ments converted to inches (divide by 2.5), and the Species
upper-cased.

2. Add a column to movies that says how much the length dif-
fers from the median.

3. [ADVANCED] Redo your irisImperial code using the
mutate_if() function to make the conversion more succinct.

Chapter 8

Working with dates
and times

This chapter will take you through some of the core functionality
you can use so that we can work with datetime columns inside
our tables later. The package lubridate contains functionality for
making dates easy to work with in R.

Time is one of the quirkiest things you’ll ever work with. This
covers some fundamentals but there’s a huge amount of depth
and nuance that could be taken into account. Please give me
some feedback1 if there’s something basic that you feel should
be included here.

library(lubridate)

8.1 Date conversions

The first thing that lubridate makes it easy to do is to take some
strings holding dates and convert these into dates.

lubridate gives us conversion functions named after how you ex-
pect the order of date and time components to be expressed in the

71

72 CHAPTER 8. WORKING WITH DATES AND TIMES

data. If you have a date that has year then month then day you
can use ymd() to convert it. If it then had hours, minutes and
second, the function you need would be ymd_hms().

Not all of these conform to year month day structure
ymd_hms(c("20110604110101","2011-06-04 11:01:01",

"2011/06/04/11/01/01","2011 june 4th, 11:01:01",
"2011%06%04%11%01%01","04/06/2011 11:01:01",
"2011-06-04 11:01:01 PDT",
"2011-06-04 11:01:00+1400"))

[1] "2011-06-04 11:01:01 UTC" "2011-06-04 11:01:01 UTC"
[3] "2011-06-04 11:01:01 UTC" "2011-06-04 11:01:01 UTC"
[5] NA NA
[7] "2011-06-04 11:01:01 UTC" "2011-06-03 21:01:00 UTC"

lubridate date conversions do have some limitations unfortu-
nately.

• If there are particularly unusual separators then you’ll get
parse problems so you may need to scrub these types of char-
acters first, using some of the string activities in the previous
chapter.

• This works when everything is in the same order component-
wise. You can do multiple conversions and use the
coalesce() function from dplyr to return the first success-
fully parsed value.

• Time zones must be denoted by using the offset values, not by
referencing time zone acronyms i.e. in the format [+/-]HHMM
as opposed to a three letter reference like GMT.

8.2 Date components

R’s built-in extractor functions for date components are a little
bit limited. lubridate provides us with many more. Each one
can also be used to set a value if you put it on the LHS of an
assignment.

myDate <- ymd_hms("20110604110101")

8.2. DATE COMPONENTS 73

You can extract or set the date component using date() function.

date(myDate)
date(myDate) <- "2012-05-01"
myDate

[1] "2011-06-04"
[1] "2012-05-01 11:01:01 UTC"

Use the year() function for extracting or setting the calendar year.

year(myDate)
year(myDate) <- year(Sys.Date())
myDate

[1] 2012
[1] "2017-05-01 11:01:01 UTC"

Use the month() function for extracting or setting the calendar
month.

month(myDate)
month(myDate) <- month(Sys.Date())
myDate

[1] 5
[1] "2017-12-01 11:01:01 UTC"

lubridate gives us a number of day functions:

• yday() for the number of days into the year
• mday() for the number of days into the month
• wday() for the number of days into the week
• You can additionally use the arguments label and abbr to

get text labels for the days of the week

yday(myDate)
mday(myDate)
wday(myDate)
wday(myDate, label = TRUE, abbr=TRUE)

74 CHAPTER 8. WORKING WITH DATES AND TIMES

[1] 335
[1] 1
[1] 6
[1] Fri
Levels: Sun < Mon < Tue < Wed < Thu < Fri < Sat

These can also be used to override values. When we override with
a value that couldn’t exist lubridate will roll the date forward by
however many days your number exceeds the end of the month by.

sept <- ymd("20170903")
mday(sept) <- 31
sept

feb <- ymd("20160204")
mday(feb) <- 31
feb

[1] "2017-10-01"
[1] "2016-03-02"

There are also functions for getting and setting time components
too.

hour(myDate)
minute(myDate)
second(myDate)

[1] 11
[1] 1
[1] 1

8.3 Date arithmetic

You don’t usually want to just get and set date attributes, you often
want to be able to do date arithmetic where you add some unit of
time and get a back a date and/or time that correctly took into
account your units given the many, many quirks of our calendar
systems.

8.3. DATE ARITHMETIC 75

To do arithmetic with lubridate the easiest way to start is with
plural versions of the components functions. Functions like days()
allow to provide the number of days, seconds, or whatever you want
to use with your date objects. Once you have some unit described
with a plural function, you can then add or subtract it easily.

myDate

[1] “2017-12-01 11:01:01 UTC”

myDate + years(1)

[1] “2018-12-01 11:01:01 UTC”

myDate - months(1)

[1] “2017-11-01 11:01:01 UTC”

myDate + days(1)

[1] “2017-12-02 11:01:01 UTC”

myDate - hours(1)

[1] “2017-12-01 10:01:01 UTC”

myDate + minutes(1)

[1] “2017-12-01 11:02:01 UTC”

myDate - seconds(1)

[1] “2017-12-01 11:01:00 UTC”

These work by changing periods and changing values based on the
period type and number of periods.

76 CHAPTER 8. WORKING WITH DATES AND TIMES

feb <- ymd("20160228")
feb + years(1)

[1] "2017-02-28"

It will not however allow you to create improbable dates e.g. 29th
February 2017.

feb <- ymd("20160229")
feb + years(1)

[1] NA

Here is the relevant segment from the lubridate documentation,
readable via running the command help("Period-class"):

lubridate enforces the reversible property of arithmetic
(e.g. a date + period - period = date) by returning an
NA if you create an implausible date by adding peri-
ods with months or years units to a date. For exam-
ple, adding one month to January 31st, 2013 results in
February 31st, 2013, which is not a real date. lubridate
users have argued in the past that February 31st, 2013
should be rolled over to March 3rd, 2013 or rolled back
to February 28, 2013. However, each of these correc-
tions would destroy the reversibility of addition (Mar 3
- one month == Feb 3 != Jan 31, Feb 28 - one month
== Jan 28 != Jan 31) taking into account many of
the rules we expect date arithmetic to adhere to like
accounting for leap years.

Sometimes you’ll want to use definitions of units of time that aren’t
based on the calendar year. If you want to use exact duration values
e.g. a year being 365 days, as opposed to incrementing the year
value, there are functions for this sort of calculation, prefixed with
d to denote that you’re adding values equivalent to the duration
denoted as opposed to incrementing the conceptual value.

feb <- ymd("20160228")
feb + years(1)
feb + dyears(1)

8.4. DATE FORMATTING 77

[1] "2017-02-28"
[1] "2017-02-27"

8.4 Date formatting

Formatting dates for output needs the format() function.2

a_date <- ymd_hms("20160228161101")
format(a_date)

[1] "2016-02-28 16:11:01"

The format() function will output using the format but we can also
provide alternative formats. Using alternative formatting involves
using components that start with a percentage sign. We can include
any other characters we want as delimiters.

format(a_date, "%Y yo %m yo %d")

[1] "2016 yo 02 yo 28"

R gives us a lot of options (read ?strptime for all of them) but
some of the most common formatting strings you’re likely to want
are:

• %Y-%m-%d %H:%M:%S is the default and yields the four digit
year, the month with a leading 0, the day with a leading 0,
the hour in the 24 hour format, the minute with a leading 0,
and the number of seconds with a leading 0.

format(a_date, "%Y-%m-%d %H:%M:%S")

[1] "2016-02-28 16:11:01"

• %c will output in your current locale’s default

format(a_date, "%c")

2Specifically, it requires the format.date() or format.POSIX*() functions
but R will automatically choose these variants when encountering a data type.

78 CHAPTER 8. WORKING WITH DATES AND TIMES

[1] "Sun Feb 28 16:11:01 2016"

• %D will yield an American style short date format

format(a_date, "%D")

[1] "02/28/16"

• %F will yield the ISO standard date format

format(a_date, "%F")

[1] "2016-02-28"

• %z and %Z allow you to output time zones as either numeric
adjustments or time zone abbreviations.

format(a_date, "%z")
format(a_date, "%Z")

[1] "+0000"
[1] "UTC"

8.5 Common tasks

Outlined here are some lubridate based solutions to common date
challenges:

• Get the first day of the month for each date.

floor_date(ymd("20171009"), "month")

[1] "2017-10-01"

• Get the last day of the month for each date.

ceiling_date(ymd("20171009"), "month") - days(1)

[1] "2017-10-31"

8.5. COMMON TASKS 79

• Add x months and return the end of the month if month
would change due to variable end dates.

ymd(c("20171031","20170130")) %m+% months(1)

[1] "2017-11-30" "2017-02-28"

• Generate a sequence of months. Use the + operator if the
value is not going to be a month-end value, otherwise use our
operator %m+% to enforce end of month behaviours.

ymd("20171011") + months(1:4)

[1] "2017-11-11" "2017-12-11" "2018-01-11" "2018-02-11"

ymd("20171031") %m+% months(1:4)

[1] "2017-11-30" "2017-12-31" "2018-01-31" "2018-02-28"

• Check if dates are between two other dates

ymd(c("20171028","20171031")) %within%
interval(ymd("20171030"),

ymd("20171130"))

[1] FALSE TRUE

• Check if two date ranges overlap

int_overlaps(interval(ymd("20171028"), ymd("20171031")),
interval(ymd("20171030"), ymd("20171130")))

[1] TRUE

• Get x weekday of the month.3

weekdays run from 1 (Sunday) to 7 (Saturday)
getXthWeekday <- function(ymddatestring, weekday, xth){
monthStart <- floor_date(ymd(ymddatestring), "month")

3Some alternative solutions are also present in a StackOverflow question4.

80 CHAPTER 8. WORKING WITH DATES AND TIMES

startDay <- wday(monthStart)
monthStart+
days(ifelse(startDay<=weekday,

weekday-startDay,
7-(startDay-weekday)
)) +

weeks(xth-1)
}

getXthWeekday("20171101", 3, 1)
getXthWeekday("20171101", 3, 2)
getXthWeekday("20171101", 3, 3)

[1] "2017-11-07"
[1] "2017-11-14"
[1] "2017-11-21"

8.6 Summary

Whilst working with dates is pretty hard conceptually, lubridate
makes it easy to get a lot of the practical work sorted.

Use functions for parsing strings to datetime objects based on the
typical structure of the strings. For parsing to date use a combina-
tion of y,m, and d e.g. dmy(). If you need to add time to these too
then you can add a combination of h,m, and s using an underscore
e.g. ymd_hms().

You can get and set components of dates using functions named
after the singular for the component you’re trying to extract e.g.
month().

Perform date arithmetic using functions named after the plural of
the component you’re trying to add/subtract e.g. months(). These
adhere to common expectations but sometimes you need to refer
to a component’s strict definition e.g. an hour being exactly 60
minutes and ignore the handling of things like daylight’s saving
time. To use the exact duration functions prefix the plural of the
component’s name with a d e.g. ddays()

Output dates to conform to expectations in downstream systems

8.7. EXERCISES 81

or for inclusion in reports using the format() function.

8.7 Exercises

1. Get the last day of the previous month for these dates:
c("2015, April 29th","2017/01/07","17/08/12")

2. Dates are hard. Try to get a year and a day from the 29th
February 2016 using lubridate – what do you think the right
answer should be 1st March 2017 or 2nd March 2017?

3. Generate a sequence of the first day of the month for the next
36 months.

Chapter 9

Working with text

This chapter will take you through some of the core functionality
you can use so that we can work with text inside our tables later.

9.1 Strings

stringr gives us a lot of great functions for working with text
data and is geared towards the way we want to work. Functions all
start with str_* and all take our strings as the first inputs, making
piping a breeze.

library(stringr)

simple <- "This IS HOrrib1y typed! "
numbers <- c("02","11","10","1")

9.1.1 Hunting for values

A core type of task we need to do with strings is finding out whether
something we’re interested in is present in a string and usually
doing something with it if we find it, like replacing it with a new
string.

83

84 CHAPTER 9. WORKING WITH TEXT

We can use str_detect() to get a boolean as to whether a string
contains a value.

str_detect(simple,"typed")

[1] TRUE

If we wanted to find and extract some text that matched a pattern,
we can use str_extract(). In the next example I use .* to match
any number of characters, as a result the function will return typed
and everything in the string after it.

str_extract(simple,"typed.*")

[1] "typed! "

To replace a string we’ve found, we can use str_replace* functions
to remove the first instance or all instances of something we’re
looking for.

str_replace(simple, "typed", "written")
str_replace_all(simple, "r", "b")

[1] "This IS HOrrib1y written! "
[1] "This IS HObbib1y typed! "

We can also count the number of times a value (or regex pattern)
occurs inside strings, using str_count(). The next example counts
the presence of upper-case and lower-case “i”.

str_count(simple, "[iI]")

[1] 3

9.1.2 Regular expressions

In the previous section, I include examples that make use of pat-
terns to hunt down values. This is really powerful because it means
I don’t have to know all combinations of values upfront – I just have

9.1. STRINGS 85

to know what the format is. Patterns and logical conditions that
operate over text are regular expressions or regex for short.

The common things we need to know when we’re deciding what
we’re looking for are:

• whether we expect something to be at the beginning of the
string – begin your pattern with ^

• whether we expect something to be at the end of the string –
end your pattern with $

• what thing we’re looking for
– anything – put .
– a known string – use the string but put a \ before any

special characters like $ if you want to look for a $
– one or more of known characters – put the options inside

[]
– an alphabetical or numerical range of characters – put

inside [] and use a - between the start and end of the
range

– a character of a given type – put type inside [:type:]
and type must match a constrained list of options

• how many times we expect it to appear consecutively
– any number of times – put * after it
– at least once – put + after it
– an exact amount – put {n} after it

Extract the first vowel that appears
str_extract(simple, "[aeiou]")
Extract the first vowel and everything after it
str_extract(simple, "[aeiou].*$")
Extract all lowercase letters
str_extract_all(simple, "[a-z]")
Check if string starts with a capital letter
str_detect(simple,"^[A-Z]")
Check if string ends in punctuation
str_detect(simple,"[:punct:]$")
Check if `r` appears twice in a row
str_detect(simple, "r{2}")
Extract where a vowel is followed by a `b`
str_extract(simple,"[aeiou]b")

[1] "i"

86 CHAPTER 9. WORKING WITH TEXT

[1] "is IS HOrrib1y typed! "
[[1]]
[1] "h" "i" "s" "r" "r" "i" "b" "y" "t" "y" "p" "e" "d"
##
[1] TRUE
[1] FALSE
[1] TRUE
[1] "ib"

Regular expressions can be incredibly powerful and there are way
more options than I’ve outlined here for constructing patterns.
Read ?regex for looking at RegEx supported by R. A neat place
to test and learn about regular expressions is regexr.com1. The
RStudio cheat sheet for working with stringr also includes a page
of RegEx.

9.1.3 String splitting

We can use stringr to break up a string into component strings
based on a number of known types of split, or by providing our
own custom split points or delimiters.

1https://regexr.com/

https://regexr.com/

9.1. STRINGS 87

String splitting can also be called tokenisation and will be
part of a natural language processing book at a later date.
That book will also make use of the package tidytext for
string splitting.

For known types of boundaries like splitting per word or sentence
we can use the boundary() function to get the criteria needed to
split a string that way.

str_split(simple, boundary("word"))
str_split(simple, boundary("sentence"))

[[1]]
[1] "This" "IS" "HOrrib1y" "typed"
##
[[1]]
[1] "This IS HOrrib1y typed! "

Alternatively, we can provide delimiters ourselves.

str_split(simple, "i")
str_split(simple, "[iI]")

[[1]]
[1] "Th" "s IS HOrr" "b1y typed! "
##
[[1]]
[1] "Th" "s " "S HOrr" "b1y typed! "

9.1.4 Other tasks

Here are a few other tasks you might need to do.

You can change the case of strings using str_to_* functions.

str_to_lower(simple)
str_to_title(simple)
str_to_upper(simple)

88 CHAPTER 9. WORKING WITH TEXT

[1] "this is horrib1y typed! "
[1] "This Is Horrib1y Typed! "
[1] "THIS IS HORRIB1Y TYPED! "

If you need other ways of manipulating the case of sentences,
check out the package lettercase.

You can remove excess white space characters from the beginning
and end of strings using str_trim().

str_trim(simple)

[1] "This IS HOrrib1y typed!"

A common difficulty people come across is when numbers have been
stored as text and the values need to be sorted correctly. stringr
gives us string specific order and sort functions that we can tell to
process numbers correctly. Use the order function when you want
to do things like sort a data.frame the column belongs to, and the
sort function for when you just want some sorted values returned.

str_order(numbers, numeric=TRUE)
str_sort(numbers, numeric=TRUE)

[1] 4 1 3 2
[1] "1" "02" "10" "11"

Another common task is finding out how long each string in a
vector is. The function str_length() will return a vector holding
the length of each element in a character vector.

str_length(numbers)

[1] 2 2 2 1

9.1.5 Advanced string operations

stringr and some of its operations can make things a little com-
plicated even for experienced R users. For example, if we had a
number of sentences that we split by word we end up with a list

9.1. STRINGS 89

with each element corresponding to the position of the original el-
ement in the vector. Each list element contains the results we’d
have gotten if we just performed the string function on a sentence
by itself.

strings <- c("A word","Two words","Not three words")

strings %>%
str_split(boundary("word"))

[[1]]
[1] "A" "word"
##
[[2]]
[1] "Two" "words"
##
[[3]]
[1] "Not" "three" "words"

If we then wanted to do something that acted on each of the split
up words this might not always give us the results we expect.

strings %>%
str_split(boundary("word")) %>%
str_detect("w")

[1] TRUE TRUE TRUE

The stringr functions are operating on the list and not operating
on the bits inside it which is of no use to us. When we want a
stringr function to be applied to the contents of the list, we can
use the map() function from purrr to make this happen. The
map() function takes the name of a function we want to apply and
any additional arguments we need to pass on.

library(purrr)
strings %>%
str_split(boundary("word")) %>%
map(str_detect,"w")

[[1]]

90 CHAPTER 9. WORKING WITH TEXT

[1] FALSE TRUE
##
[[2]]
[1] TRUE TRUE
##
[[3]]
[1] FALSE FALSE TRUE

Working with lists like this will be covered more extensively
in a later book.

9.2 Factors

Factors are a type of text where the number of unique values is
fairly low. Common types of factors are state names, countries, sur-
vey labels like Agree, medical diagnoses codes, and month names.
In such circumstances instead of just recording the text, we can
record a number that corresponds to the text. This is more space
efficient as numbers take up less memory than text. By using num-
bers to represent different values, it also gives us a mechanism for
providing custom orders to values.

When we make a string, we can just use our c() function.

myString <- c("red","blue","yellow",NA,"red")
myString

[1] "red" "blue" "yellow" NA "red"

If we want to make it into a factor, we can use the factor()
function to convert it.

myFactor <- factor(myString)
myFactor

[1] red blue yellow <NA> red
Levels: blue red yellow

By default this will extract the unique values, put them in alpha-
betical order, and then give each one a number. Converting our

9.2. FACTORS 91

string puts blue first as a level.

levels(myFactor)

[1] "blue" "red" "yellow"

We can remove the text labels from our factors to get the numeric
values.

as.numeric(myFactor)

[1] 2 1 3 NA 2

Factors can be handy but they’re pretty annoying at times too.
They’re an area that frequently gets R users into trouble. Thank-
fully, the forcats package makes working with factors much easier.
The functions in forcats are prefixed with fct so it becomes easy
to tell when you’re working with strings or factors because of the
different prefixes involved.

library(forcats)

You can build a quick frequency table to look at the distribution
of values using fct_count().

fct_count(myFactor)

A tibble: 4 x 2
f n
<fctr> <int>
1 blue 1
2 red 2
3 yellow 1
4 <NA> 1

You can recode missing values to be their own level in a factor.
This makes processing factors easier down the line.

fct_explicit_na(myFactor)

92 CHAPTER 9. WORKING WITH TEXT

[1] red blue yellow (Missing) red
Levels: blue red yellow (Missing)

By default factors get assigned levels alphabetically. You can use
fct_infreq() to re-order the levels such that they are in frequency
order i.e. the most common value has the lowest level.

fct_infreq(myFactor)

[1] red blue yellow <NA> red
Levels: red blue yellow

You can combine little used values by using fct_lump() to keep the
most common n values or provide a minimum occurrence rate that
must be met for the level to be maintained. Alternatively, you can
provide negative values to lump together the most common values
instead.

fct_lump(myFactor, n = 1)
fct_lump(myFactor, prop=.25, other_level = "OTHER")
fct_lump(myFactor, n=-1, other_level = "other")

[1] red Other Other <NA> red
Levels: red Other
[1] red OTHER OTHER <NA> red
Levels: red OTHER
[1] other blue yellow <NA> other
Levels: blue yellow other

Particularly useful if you want to depersonalise data but still be
able to derive conclusions based on person, forcats provides the
fct_anon() function to convert values into randomised numeric ID
values. As the results are random, you should put a set.seed()
command before you do the anonymisation in order to get consis-
tent results over multiple executions of your code.

set.seed(127)
fct_anon(myFactor)

[1] 3 1 2 <NA> 3
Levels: 1 2 3

9.3. SUMMARY 93

9.3 Summary

The packages stringr and forcats make it very easy to deal with
text data in R. Both packages are installed as part of the tidyverse
and depending on which version of the tidyverse you have, stringr
may already be loaded when you use library(tidyverse). They
are designed to work in pipelines and have consistent functions that
start with str for working with strings and fct for working with
factors.

94 CHAPTER 9. WORKING WITH TEXT

9.4 Exercises

1. Store “the quick brown fox jumps over the lazy dog”
2. Upper case the string
3. [ADVANCED] Split the sentence into words and count the

number of letters in each word
4. Count the records in the gss_cat dataset by survey year
5. Revise gss_cat such that there are only three levels of mari-

tal status
6. Race, partyid, religion, and denomination are sensitive values,

anonymise them

Chapter 10

Summarising data

10.1 Producing summaries

To aggregate data in our pipelines, we can uses the summarise()
function. We use this when we want to return a single row with
aggregate values, unlike with mutate() which will make a new
column with the aggregate value repeated in it.

To use summarise() provide expressions that result in a single
value and provide multiple expressions in a comma separated fash-
ion.

iris %>%
summarise(mean(Sepal.Width), mean(Sepal.Length))

mean(Sepal.Width) mean(Sepal.Length)
3.057333 5.843333

Provide a column title on the LHS of an expression along with an

95

96 CHAPTER 10. SUMMARISING DATA

equal sign (=).

iris %>%
summarise(Mean.Sepal.Width=mean(Sepal.Width),
Mean.Sepal.Length=mean(Sepal.Length))

Mean.Sepal.Width Mean.Sepal.Length
3.057333 5.843333

10.2 Aggregate functions

There are functions like sum() and mean() that already exist in R
but the tidyverse gives a number of extra functions that come in
handy:

• n() to return the number of rows
• n_distinct() to return the number of unique values in a

column
• first(), last(), and nth() for retrieving values in specific

positions in a column

iris %>%
summarise(n = n(), unique= n_distinct(Species),

first = first(Species), last = last(Species),
`51st` = nth(Species, 51))

n unique first last 51st
150 3 setosa virginica versicolor

10.3 Advanced aggregations

You can perform aggregations on all columns using summarise_all()
and on columns meeting a criteria using summarise_if() or
summarise_at() depending on where the condition you need to
check is. These will use the names of the columns being aggregated
as the column names for the output.

10.4. SUMMARISING BY GROUPS 97

iris %>%
summarise_all(n_distinct)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
35 23 43 22 3

iris %>%
summarise_if(is.numeric, mean)

Sepal.Length Sepal.Width Petal.Length Petal.Width
5.843333 3.057333 3.758 1.199333

iris %>%
summarise_at(vars(Sepal.Length:Petal.Length), mean)

Sepal.Length Sepal.Width Petal.Length
5.843333 3.057333 3.758

10.4 Summarising by groups

Most often when performing on analysis we’re interested in sum-
mary statistics within groups, factors, segments, or cohorts. We
can do this using the group_by() function. This will provide an
instruction to your pipeline that calculations should now be per-
formed within the context of the grouping columns. This means
we get summaries per group, do cumulative sums within groups,
and more.

We can provide a comma separated list of columns that we want to
group by. We can then follow it up with our other functions learnt
so far to apply those functions inside each group.

• Produce a summary table

iris %>%
group_by(Species) %>%
summarise(Avg.Sepal.Length=mean(Sepal.Length))

98 CHAPTER 10. SUMMARISING DATA

Species Avg.Sepal.Length
setosa 5.006
versicolor 5.936
virginica 6.588

• Add summary statistics for each group as a column

iris %>%
group_by(Species) %>%
mutate(Avg.Sepal.Length=mean(Sepal.Length))

Sepal.Length Petal.Width Species Avg.Sepal.Length
5.1 0.2 setosa 5.006
7.0 1.4 versicolor 5.936
6.3 2.5 virginica 6.588

• Take records from each group which is useful for getting the
first record, especially when used along with sorting

iris %>%
group_by(Species) %>%
slice(1)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
5.1 3.5 1.4 0.2 setosa
7.0 3.2 4.7 1.4 versicolor
6.3 3.3 6.0 2.5 virginica

• Perform within group sorting

iris %>%
group_by(Species) %>%
arrange(desc(Sepal.Length))

10.4. SUMMARISING BY GROUPS 99

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
5.8 4.0 1.2 0.2 setosa
5.7 4.4 1.5 0.4 setosa
7.0 3.2 4.7 1.4 versicolor
6.9 3.1 4.9 1.5 versicolor
7.9 3.8 6.4 2.0 virginica
7.7 3.8 6.7 2.2 virginica

When we perform a group_by() the grouping context hangs
around. You can replace it with another grouping context to get
a different level of aggregation. This is useful if you need to go
from a fine grain (lots of rows) aggregation to a low grain (few
rows) aggregation or if you need to put various group level metrics
against rows.

iris %>%
group_by(Species) %>%
mutate(SpeciesN=n()) %>%
group_by(Sepal.Length) %>%
mutate(Sepal.LengthN=n())

Sepal.Length Petal.Width Species SpeciesN Sepal.LengthN
5.1 0.2 setosa 50 9
4.9 0.2 setosa 50 6
4.7 0.2 setosa 50 2
4.6 0.2 setosa 50 4
5.0 0.2 setosa 50 10
5.4 0.4 setosa 50 6

By default, later groupings override existing groupings but you
can use the add argument to instead add to the existing grouping
context.

iris %>%
group_by(Species) %>%
mutate(SpeciesN=n()) %>%
group_by(Sepal.Length, add=TRUE) %>%
mutate(Sepal.LengthN=n())

100 CHAPTER 10. SUMMARISING DATA

Sepal.Length Petal.Width Species SpeciesN Sepal.LengthN
5.1 0.2 setosa 50 8
4.9 0.2 setosa 50 4
4.7 0.2 setosa 50 2
4.6 0.2 setosa 50 4
5.0 0.2 setosa 50 8
5.4 0.4 setosa 50 5

If you need to remove a grouping context to be able to work on the
table as a whole again, you can use the ungroup() function.

iris %>%
group_by(Species) %>%
mutate(SpeciesN=n()) %>%
ungroup() %>%
head()

Sepal.Length Petal.Width Species SpeciesN
5.1 0.2 setosa 50
4.9 0.2 setosa 50
4.7 0.2 setosa 50
4.6 0.2 setosa 50
5.0 0.2 setosa 50
5.4 0.4 setosa 50

10.5 Advanced grouping

We can also perform programmatic groupings. group_by_all()
can be useful for finding out the number of duplicates in a dataset.

iris %>%
group_by_all() %>%
summarise(nrows=n())

10.5. ADVANCED GROUPING 101

Sepal.Length Sepal.Width Species nrows
4.3 3.0 setosa 1
4.4 2.9 setosa 1
4.4 3.0 setosa 1
4.4 3.2 setosa 1
4.5 2.3 setosa 1
4.6 3.1 setosa 1

group_by_if() allows you to use some criteria for grouping. Useful
for if you want to group by text columns, or columns with low
uniqueness.

iris %>%
group_by_if(~n_distinct(.)<30) %>%
summarise(n())

Sepal.Width Petal.Width Species n
2.0 1.0 versicolor 1
2.2 1.0 versicolor 1
2.2 1.5 versicolor 1
2.2 1.5 virginica 1
2.3 0.3 setosa 1
2.3 1.0 versicolor 1

group_by_at() allows you to use some criteria for grouping based
on names. Useful for if you want to group by columns that have
IDs in them for instance.

iris %>%
group_by_at(vars(starts_with("Sp"))) %>%
summarise(n())

Species n
setosa 50
versicolor 50
virginica 50

102 CHAPTER 10. SUMMARISING DATA

10.6 Summary

Produce aggregate rows using the summarise() function, or add
aggregates to rows using mutate(). Use group_by() to produce
aggregates or perform actions within groups. group_by() can be
used repeatedly to change the grouping context of activities, and
ungroup() can remove grouping contexts if required. Program-
matic grouping contexts can be generated using group_by_all(),
group_by_at(), and group_by_if().

Hadley Wickham and the other folks who write the code that
powers the tidyverse are from different places around the
world, including places that use British English not American
English. As such they very nicely provide British and Amer-
ican variants of function or argument names so you can use
what you feel most comfortable with. I’m British so you don’t
see summarize() being used but it is valid. Use whatever you
feel comfortable with.

10.7 Exercises

1. Find the min and max values for length in movies
2. In a pipeline, find out what proportion of films are Action

movies, Action Comedies, Comedies, and neither Action or
Comedy

3. [ADVANCED] Get the range for each numeric variable in
movies. Hint: Range outputs two values so you need to
make a custom function that will concatenate the outputs of
range

Chapter 11

Combining datasets

11.1 Joining two tables to make a wider
table

A lot of the time, if we get two datasets we want to combine them
based on some criteria to do with columns. For instance, let’s say
we wanted to analyse sales by customer attributes and we had sales
and customer datasets. We would want to match the customer data
to the sales data based on the customer identifier so that we could
get one dataset where each sales record had customer information
as extra columns of data that we could then use to analyse our
sales by.

There are different types of joins that we can use. We typically
think of our first dataset as our data on the left and the data we
are trying to add on as extra columns as being on the right. The
different types of joins are:

• inner join for getting only rows matched on both sides;

103

104 CHAPTER 11. COMBINING DATASETS

• left join for getting all the rows on the left hand side with
any matching data from the right;

• full join for getting all the rows on the left and the right
with rows matched where possible;

• anti join for getting everything on the left where there’s no
match on the right;

• cross join for getting every row on the left joined against
every row on the right.

11.1. JOINING TWO TABLES TO MAKE A WIDER TABLE105

These join types each have an R function, which is the join type
with an underscore instead of a space. So anti join becomes
anti_join() and left join becomes left_join(). At present
there is no specific function for performing a cross_join() so there
is a section in this chapter covering how to do cross joins.

11.1.1 Applying joins to scenarios

Let’s explore some scenarios in order to identify the type of join
we might use in each case.

• We need to get the sales from registered customers. Here we
have sales that may or may not have a customer ID and we
want to join our customer data so that it filters out any row
which doesn’t have a matching customer ID. This would be
an inner join where we only get rows with matches.

• We need to get the sales with the retail customer or commer-
cial customer details where applicable. In this case, we need
to actually get retail data and company data added to our
sales data. As we want cases where one or the other are a
match, we can’t use inner joins as this would filter out non-
matches on the first dataset we try so we wouldn’t necessarily
get any data when we join the second on and we’d lose a lot
of sales. Instead, we need to use left joins so that we get sales
data with customer data where there’s a match, and then do
the same to get the company data joined onto the sales and
customer data where there’s a match.

• We need to know how many sales each customer has made,
how many customers have not made a sale, and how many
sales don’t have an associated customer. For this we need
to know where customer rows match sales data, where they
don’t have any corresponding rows in sales, and where there
are sales with no match in the customer data. We use a full
join to get all three types of match i.e. no match on the right,
a match on the right, no match on the left.

• We need to provide aggregations about what happened in
different categories and times without missing categories or
times that had no sales. We can use cross join to get every
combination of category and time, then left join our sales data
to this new dataset to ensure we don’t miss any categories or
times when we do our aggregations.

106 CHAPTER 11. COMBINING DATASETS

• We have some text data from customer calls and we want
to do some sentiment analysis. We discovered the nifty
tidytext package and started working through some of the
tutorials. One of the tidytext functions helped us turn our
transcripts into a dataset with each word on its own line.
To avoid keeping pointless words around, we then get shown
how to do an anti-join to remove all the pointless words by
comparing our data to the table of stop words. Now we have
data fit for sentiment analysis.

11.1.2 Building joins

We need some information for joining data:

• what will be the table that gets joined on to
• what table will be joining onto our first table
• what columns will we use as our match criteria

Our starter table will be mentioned in our main pipeline and then
we’ll use our table that’s joining on to it inside a *_join() function.
Inside our join, we may also need to provide join criteria if we don’t
want it to perform matches based on (case-sensitive) name matches.

Let’s set up an example. Here I have a table with some colours
I want to associate with some species in our iris data. Unfor-
tunately, the person who made the table wasn’t aware that R is
case-sensitive!

irisLk <- data_frame(
species=c("setosa","virginica","VERSICOLOR"),
colour=c("Red","Blue","Green"))

If we want to add the lookup data to our iris dataset and we use
left_join() we’ll get an error. This is because the lookup table’s
species column starts with a lower-case “s”.

iris %>%
left_join(irisLk)

Error: by required, because the data sources have no
common

11.1. JOINING TWO TABLES TO MAKE A WIDER TABLE107

To specify the join criteria we can pass a vector to the by argu-
ment. The vector of our criteria leverages the fact that values in
vectors can have names like c("colA"="cola","colB"="colb").
The value on the LHS is the column name from our first table, and
the value on the RHS is the column name from the table we’re
joining to our first table.

iris %>%
left_join(irisLk, c("Species"="species"))

Sepal.Length Petal.Width Species colour
5.1 0.2 setosa Red
4.9 0.2 setosa Red
7.0 1.4 versicolor NA
6.4 1.5 versicolor NA
6.3 2.5 virginica Blue
5.8 1.9 virginica Blue

11.1.3 Cross joins

At the time of writing there is no cross_join() function in
dplyr which is the primary data manipulation package within the
tidyverse.

To perform a cross join we can add a dummy column that will
cause a join of every row on the LHS table to every row of the
RHS table. We can use some new pipeline syntax which allows
us to nest pipelines within each other – using curly braces allows
us to provide a multi-line expression as the input to a function
argument. Consequently, we’re able to provide a version of the
irisLk that temporarily has the dummy column at the same time
as we’re generating the dummy column on our iris table. Once
joined, we remove the dummy column using select() as it’s no
longer required.

iris %>%
mutate(dummycol=1) %>%
full_join({
irisLk %>%
mutate(dummycol=1)

108 CHAPTER 11. COMBINING DATASETS

}, by="dummycol") %>%
select(-dummycol)

Sepal.Length Petal.Width Species species colour
5.1 0.2 setosa setosa Red
5.1 0.2 setosa virginica Blue
5.1 0.2 setosa VERSICOLOR Green
4.9 0.2 setosa setosa Red
4.9 0.2 setosa virginica Blue
4.9 0.2 setosa VERSICOLOR Green

If you find yourself using cross join a lot, you could make a function
that makes this process generic.

cross_join<-function(x, y){
x %>%
mutate(dummycol=1) %>%
full_join({
y %>%
mutate(dummycol=1)

}, by="dummycol") %>%
select(-dummycol)

}

11.1.4 Join examples

To help get a handle on the different types of joins and the shape
of the data they return, let’s run through combining iris data and
the irisLK data with our different join types.

If we do a left join, the dimensions of the resulting table are 6
columns which are our original columns plus the extra value column
from irisLk. Species doesn’t need to be replicated multiple times
so we don’t end up with 7 columns. The row count is 150 as
it returns everything from our iris table and information from
irisLk where available.

iris %>%
left_join(irisLk, c("Species"="species"))

11.1. JOINING TWO TABLES TO MAKE A WIDER TABLE109

Sepal.Length Petal.Width Species colour
5.1 0.2 setosa Red
4.9 0.2 setosa Red
4.7 0.2 setosa Red
4.6 0.2 setosa Red
5.0 0.2 setosa Red
5.4 0.4 setosa Red

If we do an inner join, the dimensions of the resulting table are
6 columns like with the left join but now the row count is 100
as it filters out the 50 “versicolor” rows from iris as there’s no
corresponding row in irisLk.

iris %>%
inner_join(irisLk, c("Species"="species"))

Sepal.Length Petal.Width Species colour
5.1 0.2 setosa Red
4.9 0.2 setosa Red
4.7 0.2 setosa Red
4.6 0.2 setosa Red
5.0 0.2 setosa Red
5.4 0.4 setosa Red

Performing a full join gives the amount of columns (6) but returns
rows with matches and without from both sides of the join so we
end up with 151 rows.

iris %>%
full_join(irisLk, c("Species"="species"))

Sepal.Length Petal.Width Species colour
5.1 0.2 setosa Red
4.9 0.2 setosa Red
4.7 0.2 setosa Red
4.6 0.2 setosa Red
5.0 0.2 setosa Red
5.4 0.4 setosa Red

110 CHAPTER 11. COMBINING DATASETS

An anti-join filters out cases where there’s a match in our join
criteria. This doesn’t add extra columns so we only have 5 columns,
and it filters out the “setosa” and “virginica” rows leaving us with
50 rows.

iris %>%
anti_join(irisLk, c("Species"="species"))

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
7.0 3.2 4.7 1.4 versicolor
6.4 3.2 4.5 1.5 versicolor
6.9 3.1 4.9 1.5 versicolor
5.5 2.3 4.0 1.3 versicolor
6.5 2.8 4.6 1.5 versicolor
5.7 2.8 4.5 1.3 versicolor

A cross join has no concept of a key so it does not de-duplicate
columns contained in the join criteria, resulting in 7 columns. It
then returns 150 rows from iris combined with the 3 rows from
irisLk such that we end up with 450 rows in total.

iris %>%
cross_join(irisLk)

Sepal.Length Petal.Width Species species colour
5.1 0.2 setosa setosa Red
5.1 0.2 setosa virginica Blue
5.1 0.2 setosa VERSICOLOR Green
4.9 0.2 setosa setosa Red
4.9 0.2 setosa virginica Blue
4.9 0.2 setosa VERSICOLOR Green

11.1.5 Join by position

This isn’t something I would generally recommend as data can
change order during reruns of queries to databases or users inserting
rows in spreadsheets, but you can join data based on position. If
you have two data sets of the same number of rows you can use
bind_cols() to simply combine the two sets of data.

11.1. JOINING TWO TABLES TO MAKE A WIDER TABLE111

iris[,1:3] %>%
bind_cols(iris[,4:5])

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
5.1 3.5 1.4 0.2 setosa
4.9 3.0 1.4 0.2 setosa
4.7 3.2 1.3 0.2 setosa
4.6 3.1 1.5 0.2 setosa
5.0 3.6 1.4 0.2 setosa
5.4 3.9 1.7 0.4 setosa

11.1.6 Join based on other criteria

You don’t always want to join on exact matches of columns. Some-
times you might want to join rows that are earlier than a given
date per customer, where values overlap, or where ranges are spec-
ified. At the time of writing, this isn’t very well supported in the
tidyverse.

My recommendation right now is to perform a cross join and then
use filter() to apply your join criteria.

For instance, let’s say I want to get get every flower from iris and
the information about flowers from the same species that are larger
than it. I can cross join to get all combinations, then use a filter
to ensure they’re the same species and add other conditions that
enforce the size constraints.

iris %>%
cross_join(iris) %>%
filter(Species.x == Species.y,

Sepal.Length.x < Sepal.Length.y,
Sepal.Width.x < Sepal.Width.y,
Petal.Length.x < Petal.Length.y,
Petal.Width.x < Petal.Width.y)

112 CHAPTER 11. COMBINING DATASETS

Sepal.Length.x Species.x Sepal.Length.y Species.y
5.1 setosa 5.4 setosa
5.1 setosa 5.7 setosa
5.1 setosa 5.7 setosa
4.9 setosa 5.4 setosa
4.9 setosa 5.7 setosa
4.9 setosa 5.7 setosa

These types of joins are much more supported in another data
manipulation package called data.table. data.table will
be the subject of a later book. If you find yourself needing
higher performance data manipulation or things like compli-
cated joins frequently, I would recommend taking a look at
data.table.

11.2 Joining two tables to make a longer
table

Sometimes we have multiple tables that represent different slices
of data. We could have loaded up some different spreadsheet tabs
that contain customers from different sources and we need one big
customer list, for instance.

11.2.1 Same structure data

The operations that we use if both tables have the same struc-
ture are ones that union i.e.. combine two datasets. The union()
function will de-duplicate results and union_all() will return the
full set of rows. this means a union() result can have fewer rows
than the number of rows of the two tables added together, whereas
union_all() will have exactly the number of rows as the two tables
added together.

11.2. JOINING TWO TABLES TO MAKE A LONGER TABLE113

iris %>%
sample_n(50) %>%
union(sample_n(iris, 75))

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
6.9 3.2 5.7 2.3 virginica
5.1 3.8 1.9 0.4 setosa
5.5 2.3 4.0 1.3 versicolor
6.9 3.1 4.9 1.5 versicolor
7.2 3.6 6.1 2.5 virginica
6.4 3.1 5.5 1.8 virginica

11.2.2 Differing structures

Your data doesn’t always have the same structure though – the
columns could be jumbled or differ between the data.frames. In
such cases, we can use bind_rows(). bind_rows() matches on
column names and will add columns if they weren’t present in the
first dataset.

In this example, I take a random sample of 50 records and remove

114 CHAPTER 11. COMBINING DATASETS

the Species column. I then use bind_rows() to add another 50
rows on to that data only the dataset has all the columns. As a
result, the Species column gets filled with NAs for our first records.

iris %>%
sample_n(50) %>%
select(-Species) %>%
bind_rows(sample(iris, 50))

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
6.6 3.0 4.4 1.4 NA
7.2 3.2 6.0 1.8 NA
6.4 2.8 5.6 2.1 NA
4.5 2.3 1.3 0.3 NA
6.4 2.8 5.6 2.2 NA
6.3 2.7 4.9 1.8 NA

If the data is already in R in various objects in memory, you can
add them all to a list and use the bind_rows() function to combine
them all in one step.

iris1 <- iris[1:50,1:4]
iris2 <- iris[51:100,2:5]
iris3 <- iris[101:150,2:3]

to_merge <- list(iris1, iris2, iris3)

to_merge %>%
bind_rows() %>%
nrow()

[1] 150

11.3 Summary

There’s robust techniques for combining multiple datasets into a
single dataset in the tidyverse suite of R packages.

• Join two sets of data based on one or more columns such that
you get all the data from the LHS with matched data from

11.4. EXERCISES 115

the RHS using left_join()
• Join two sets of data based on one or more columns such that

you get only the data from the LHS with matched data from
the RHS using inner_join()

• Join two sets of data based on one or more columns such that
you get all the data from the LHS with matched data from
the RHS and rows where there was no match on either side
using full_join()

• Join two sets of data such that every row from the LHS
is matched to every row on the right by creating dummy
columns and then performing a different type of join

• Get a dataset with rows removed where there are matches
based on one or more columns compared against another
dataset using anti_join()

• Join two sets of data based on row position using
bind_cols()

• Combine two datasets of the same structure and remove du-
plicates using union()

• Combine two datasets of the same structure and keep all
records using using union_all()

• Combine two datasets with varying structures and keep all
records using bind_rows()

• Combine multiple datasets by adding them to a list and using
bind_rows()

11.4 Exercises

1. Create a summary of the movies data by year that says how
many movies were released each year and the average dura-
tion

2. Add this summary data to the movies table
3. Create a subset of the movies table that has any film over 300

minutes long, use a join to get everything but those records
4. If you didn’t do this in an earlier chapter, use sample_n() to

take a thousand records from movies, write the data to CSV
with a file name that contains the current time. Rerun the
code multiple times to generate some CSVs. Read any CSVs
into a combined dataset called moviessample

Chapter 12

Reshaping data

Often we get data that has been laid out in ways that make it
difficult do analysis. We’ll often receive data that has been put
into a summary table format and we need to get it into a format
so we can do analysis or make charts easily.

Country 2016 2017
UK 5 6
USA 10 8

I would refer to this data as pivoted – there was some data that
had row(s) containing a country, a year, and a measure that was
pivoted to produce a summary by country and year.

Unpivoting this data involves bringing it back to the country and
year level.

Country Year Measure
UK 2016 5
UK 2017 6
USA 2016 10
USA 2017 8

Once data is unpivoted, we can do a lot more calculations without

117

118 CHAPTER 12. RESHAPING DATA

having to do anything complex. This is great when we’re working
with our data. Once we’ve produced some summaries, we’ll then
need to pivot the data again for presentation purposes.

12.1 Unpivoting data

To go from pivoted data, we can use the gather() function as in
“you gather up all the data”. When we gather() the data, we need
to provide the destination with column names for the old column
names and the cell contents. Optionally, we can provide specifica-
tions as to which columns we want included or excluded from the
action – we usually want to avoid unpivoting the ID columns for
instance.

Let’s use our mtcars data with the row names converted to a col-
umn.

mtcars %>%
rownames_to_column("car") ->
mtcars2

car mpg cyl disp hp drat wt qsec
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02
Datsun 710 22.8 4 108 93 3.85 2.320 18.61
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02
Valiant 18.1 6 225 105 2.76 3.460 20.22

To unpivot this data, we say what our destination column should
be for our old column headers, the column name for our pivoted
values, and we can also provide inclusions or exclusions for stuff
we don’t want to be unpivoted. In the case of mtcars2, I want to
retain the car against every measure.

mtcars2 %>%
gather(measure, value, -car)

12.1. UNPIVOTING DATA 119

car measure value
Mazda RX4 mpg 21.0
Mazda RX4 Wag mpg 21.0
Datsun 710 mpg 22.8
Hornet 4 Drive mpg 21.4
Hornet Sportabout mpg 18.7
Valiant mpg 18.1

The data in this layout is great for analysing. For instance, if I
need to know the difference from mean for each car and measure
combo, I can now use group_by() and mutate() to achieve this.

mtcars2 %>%
gather(measure, value, -car) %>%
group_by(measure) %>%
mutate(diff= value-mean(value))

car measure value diff
Mazda RX4 mpg 21.0 0.909375
Mazda RX4 Wag mpg 21.0 0.909375
Datsun 710 mpg 22.8 2.709375
Hornet 4 Drive mpg 21.4 1.309375
Hornet Sportabout mpg 18.7 -1.390625
Valiant mpg 18.1 -1.990625

As well the optional inclusion and exclusion of columns, you can
also specify how to handle missings (na.rm), whether to change
datatype from character (convert) if you have numeric column
names for instance, and if you want the column names to end up
stored as a factor (factor_key).

mtcars2 %>%
gather(measure, value, -car, factor_key=TRUE)

120 CHAPTER 12. RESHAPING DATA

car measure value
Mazda RX4 mpg 21.0
Mazda RX4 Wag mpg 21.0
Datsun 710 mpg 22.8
Hornet 4 Drive mpg 21.4
Hornet Sportabout mpg 18.7
Valiant mpg 18.1

12.2 Pivoting data

Going from a long view of our data to a wider one involves using
the spread() function, which spreads our data out over multiple
columns. To spread() data we need to say which column will
become our column names and which values will go into our cells.
Ideally, you should not have duplicate combinations of values which
will stay on the rows and those that will become column names. In
such cases it’s often best to perform an aggregation step first.

For instance, let’s get a table that shows the average miles per
gallon (mpg) split out by whether cars are automatic (am) and the
number of cylinders (cyl).

mtcars2 %>%
group_by(cyl, am) %>%
summarise(avg=mean(mpg)) %>%
spread(am, avg)

cyl 0 1
4 22.900 28.07500
6 19.125 20.56667
8 15.050 15.40000

There aren’t formatting options that you can apply when pivoting
data so you need to format data whilst it’s in a long form. Common
formatting you may want to apply include:

• scales::percent()1 function from the package scales al-
1The percent() function is from the scales package. Here I use the

package::function() notation to use a function from a package without run-
ning library().

12.3. STRING SPLITTING REVISITED 121

lows nice percent based formatting
• round() allows you do typical rounding activities
• format() allows you to format value, for instance; including

thousand delimiters
• paste, paste0, and str_c() from stringr allow you to com-

bine values

mtcars2 %>%
group_by(cyl, am) %>%
summarise(avg=round(mean(mpg),1)) %>%
spread(am, avg)

cyl 0 1
4 22.9 28.1
6 19.1 20.6
8 15.1 15.4

Other options include what do when data is missing for a given com-
bination of row and column (fill), allow the changing of datatypes
(convert), reduce factors (drop), or include the column name as a
prefix to the new columns (sep).

mtcars2 %>%
group_by(cyl, am) %>%
summarise(avg=round(mean(mpg),1)) %>%
spread(am, avg, sep=":")

cyl am:0 am:1
4 22.9 28.1
6 19.1 20.6
8 15.1 15.4

12.3 String splitting revisited

In an earlier chapter we covered various way of splitting strings.
They’re not necessarily optimised for working in data.frames
though. Inside the package tidyr is another string splitting
function called seperate() that we can use instead. This is

122 CHAPTER 12. RESHAPING DATA

very handy when you want to convert a column in a dataset into
multiple columns.

To use seperate() you provide the column you’d like to split and
the new column names desired in a vector. This means you should
have an expectation about how the columns will end up – other
string splitting methods might be more appropriate when you don’t
know in advance.

data_frame(measure=c("net 2017","gross 2017")) %>%
separate(measure,c("type","year"))

type year
net 2017
gross 2017

Optional arguments you can use include what to separate on (sep),
clean up (remove), how to handle data types (convert), and what
behaviour should occur when you were wrong about the splits
(extra).

data_frame(measure=c("net 2017","gross 2017")) %>%
separate(measure,c("type","year"),

convert=TRUE, remove=FALSE)

measure type year
net 2017 net 2017
gross 2017 gross 2017

12.4 Summary

Unpivot a dataset using the gather() function. Provide it with
the destination column names for the repeated measures and the
values. Add in references columns you want to include or exclude
from the transformation.

Pivot a dataset using the spread() function. Provide it with the
repeated value column to be used as destination column names

12.5. EXERCISE 123

and the column that will populate the table cells. Prior to us-
ing spread() remove extraneous columns that can screw up your
transformation. Pre-format the values that will go into the cells.

Transform a column to multiple column when data is consolidated
using the seperate() function. Provide it with the column to be
split, a vector of new column names, and optionally what separator
to use.

12.5 Exercise

1. Unpivot the who dataset, keeping everything from country to
year on each row

• Use string manipulation to change newrel to new_rel
in what used to be column names

• Use seperate() to split out the measure components
as much as possible

2. Make a table showing country population as a percentage of
global population by year using the population dataset

• Calculate the percentage of the worlds population by
year for each country

• Format the percentage
• Excluding columns as required, pivot the data

Chapter 13

Getting data out of R

Like the chapter on getting data, this chapter does not exhaustively
cover working with different data stores. The focus in this chapter
is writing data to CSVs, spreadsheets, and databases.

13.1 CSVs

You can write a dataset to CSV using the write_csv() function
in readr. Generally, packages that do write activities in the
tidyverse will follow this convention of write_filetype() which
will make it easier for you to pick up further capabilities when
working with files.

By default, write_csv() only needs two arguments:

• a dataset
• a destination file name

write_csv(iris, "iris.csv")

The destination file name can also include information about where
the file should be stored.

• If you just put "filename.csv" then the file will be stored
wherever R is currently working.

125

126 CHAPTER 13. GETTING DATA OUT OF R

– Look at the location mentioned next to the Console
header for insight into where its currently working. This
is hopefully inside a project directory.

– Alternatively, you can run getwd() to get the informa-
tion.

• If you put "./filename.csv" the file will be written in the
current directory as the . denotes the current directory.

• If you put "../filename.csv" the file will be written to the
directory above the one R is currently working in.

• If you put "~/filename.csv" the file will be stored in your
home directory. The tilde (~) represents your user home di-
rectory.

• In Windows, your home directory is usually “My documents”.
• In Linux and Mac, your home directory is your user account’s

root directory.
• RStudio will do code completion for file structures which can

make it easy to specify where to save things.

You can also provide much more detail if you have requirements
that are not met by the defaults.

• Specify how missing values should be encoded in the file with
the na argument

• Add date to an existing file instead of overwriting it if it exists
by using the append argument

• Specify whether to add column names with the col_names
argument

If you need a different delimiter to a comma, write_delim() will
allow you to provide a delimiter.

13.2 Spreadsheets

The simplest way to start writing data to a spreadsheet is with
the package writexl. This gives us a very simple write experi-
ence and resulting output. It’s cross-platform and has no external
dependencies.

library(writexl)
write_xlsx(iris, "iris.xlsx")

13.3. DATABASES 127

The only optional argument for write_xlsx() is column names.
This package is intentionally simple and light.

If you need a more configurable write to Excel, you can use
openxlsx. It’s cross-platform with no external dependencies
either but is substantially slower than writexl1.

library(openxlsx)
write.xlsx(iris, "iris.xlsx")

The tweaking of parameters allows you to a fairly wide variety of
work, including setting the sheet name, setting the output up as
an Excel table, and specifying it’s location on the sheet.

write.xlsx(iris, "iris.xlsx",
sheetName="iris",
asTable=TRUE,
startCol=2, startRow=2)

If you need even more complicated writes then you’ll need one of
the packages like writeXL that depend on Java.2

13.3 Databases

Using our database connection we can write data new or existing
tables in the database.

dbConn<-dbConnect(odbc(),
driver="ODBC Driver 13 for SQL Server",
server="mhknbn2kdz.database.windows.net",
database="AdventureWorks2012",
uid="sqlfamily",
pwd="sqlf@m1ly")

The function for writing data to the database is dbWriteTable().
This takes a database connection, a table name, and the data you
want written to the database. Optional arguments include:

1Benchmark provided by Jeroen Ooms in The writexl package: zero depen-
dency xlsx writer for R snip.ly/benchmark

2I would recommend pushing back on such requirements as much as possible!

128 CHAPTER 13. GETTING DATA OUT OF R

• overwrite to drop existing data and insert new data
• append to insert data into an existing table
• field.types to provide specific data types instead of relying

on auto-detection

dbWriteTable(dbConn,
"iris",
iris,
overwrite=TRUE)

13.4 Summary

This chapter covered how to write data to CSV, Excel, and to a
database. The packages I recommend you get started with are
readr, readxl, and writexl. These all follow the convention of
action_file() which makes it easy to remember what you need
to do.

13.5 Exercises

2. Write the dataset movies to CSV
3. Write the dataset movies to a spreadsheet
4. Use sample_n() to take a thousand records from movies,

write the data to CSV with a file name that contains the
current time.

Chapter 14

Putting it all together

If you’re not experienced at manipulating data, the stuff we’ve cov-
ered so far can feel disconnected. Each section shows building block
that you can use to make really powerful data pipelines but it can
be difficult to see how you can piece them all together. This section
provides a rough workflow for you to go through when performing
some data manipulation and works through some examples. It
then has exercises that you can tackle to help you put things into
practice like you would in the wild.

The flowchart here is not exhaustive of all cases but is a great
framework to help you get started in building data pipelines.

129

130 CHAPTER 14. PUTTING IT ALL TOGETHER

Get data

Unpivot?gather() Yes

Add data? Join data? *_join()

union()
bind_rows()

Yes Yes

Filter data?
filter()
slice()

Yes

Work with
columns?

Pick columns? select()

mutate()
transmute()

Yes Yes

Work within
groups?

group_by() Yes

Group-based
calculations?

Consolidate
data?

summarise()

mutate()
transmute()

Yes Yes

Pivot data?spread() Yes

Write data

Sort data?arrange() Yes

14.1 Working with the flights data

We’ll start by solving the sorts of questions or requests you might
answer using the flights data from nycflights13

14.1. WORKING WITH THE FLIGHTS DATA 131

library(nycflights13)

14.1.1 How many flights arrived late each
month?

Before we even begin answering this, the first thing we need to
know is what does the person mean by late?1 Asking the person
who made the request we find out a plane arrives late if it arrives
more than 5 minutes after its scheduled arrival time.

Thinking about this in the context of the flowchart:

• our data is flights

flights

• we don’t need to unpivot our data
• we don’t need to add data
• we were not given any specific time ranges so no filtering

required
• we already have month in our data so we don’t need to do

any work with columns
• we need to work within a group of month

flights %>%
group_by(month)

• we need a group-based calculation that consolidates data by
sums the instances where flights are late

– after investigating the data we see NAs in the arr_delay
column we need to remove

flights %>%
group_by(month) %>%
summarise(lateflights=sum(arr_delay>5, na.rm=TRUE))

1You might also want to ask what they mean by month but we’ll leave it as
calendar month for simplicity here.

132 CHAPTER 14. PUTTING IT ALL TOGETHER

month lateflights
1 8988
2 8119
3 9033
4 10544
5 8490

• we don’t need to pivot the data as we’re only analysing by a
single dimension

14.1.2 What percentage of traffic did each car-
rier represent, by month?

• our data is flights

flights

• we don’t need to unpivot our data
• we don’t need to add data
• we were not given any specific time ranges so no filtering

required
• we already have month and carrier in our data so we don’t

need to do any work with columns
• we need to work within a group of month and carrier to be

able to get the lowest level of information we need

flights %>%
group_by(month, carrier)

• we need a group-based calculation that counts the number of
rows per group

flights %>%
group_by(month, carrier) %>%
summarise(n=n())

month carrier n
1 9E 1573
1 AA 2794

14.1. WORKING WITH THE FLIGHTS DATA 133

• we need to work within a group of month to compare carrier
flight counts to the total for each month

flights %>%
group_by(month, carrier) %>%
summarise(n=n()) %>%
group_by(month)

• we need a within group calculation that compares each car-
rier’s monthly volume to the total monthly volume

flights %>%
group_by(month, carrier) %>%
summarise(n=n()) %>%
group_by(month) %>%
mutate(prop=n/sum(n))

month carrier n prop
1 9E 1573 0.0582506
1 AA 2794 0.1034662

• we need to pivot the data as we’re analysing by two dimen-
sions

• our proportion needs to be formatted first with scales::percent()
• we won’t need our n field so we should remove that in our

mutate()

flights %>%
group_by(month, carrier) %>%
summarise(n=n()) %>%
group_by(month) %>%
mutate(prop=scales::percent(n/sum(n)),

n=NULL) %>%
spread(month, prop)

134 CHAPTER 14. PUTTING IT ALL TOGETHER

carrier 1 2 3 4
9E 5.8% 5.8% 5.6% 5.3%
AA 10.3% 10.1% 9.7% 9.6%
AS 0.2% 0.2% 0.2% 0.2%
B6 16.4% 16.4% 16.5% 15.9%
DL 13.7% 13.8% 14.5% 14.4%

14.1.3 What was the latest flight to depart each
month?

• our data is flights

flights

• we don’t need to unpivot our data
• we don’t need to add data
• we were not given any specific time ranges so no filtering

required
• we already have month and departure delay in our data so

we don’t need to do any work with columns
• we need to work within a group of month to be able to get

find the flight with the longest delay in each month

flights %>%
group_by(month)

• we need to identify which flight had the largest delay, we can
do this by sorting

flights %>%
group_by(month) %>%
arrange(desc(dep_delay))

year month day dep_time sched_dep_time dep_delay
2013 1 9 641 900 1301
2013 6 15 1432 1935 1137

14.2. WORKING WITH THE GAPMINDER DATA 135

• we can now use slice() to get the first row for each group
which gives us the record with the greatest departure delay
by month

flights %>%
group_by(month) %>%
arrange(desc(dep_delay)) %>%
slice(1)

year month day dep_time sched_dep_time dep_delay
2013 1 9 641 900 1301
2013 2 10 2243 830 853

14.2 Working with the gapminder data

This section looks at answering some questions about population
based on the gapminder dataset

library(gapminder)

14.2.1 What data was excluded to make the
gapminder dataset?

The person who made the datasets didn’t document the difference
between gapminder and gapminder_unfiltered.2 Before we can
draw conclusions from the data we need to know what is removed
so we can understand if we want to rely on the data.

We should run some sort of summary on our datasets first.

• our first dataset is gapminder and our bigger dataset is
gapminder_unfiltered

gapminder
gapminder_unfiltered

2Jenny Bryan is awesome so of course she did but if it were some data
produced in your organisation you might not know the rules that made it if
documentation is missing or hard to find so we’re playing make believe here.

136 CHAPTER 14. PUTTING IT ALL TOGETHER

• we don’t need many of the things that we could do – we just
need to consolidate to a single row with the number of unique
values for each column (initially)

gapminder %>%
summarise_all(n_distinct)

gapminder_unfiltered %>%
summarise_all(n_distinct)

country continent year lifeExp pop gdpPercap
142 5 12 1626 1704 1704

country continent year lifeExp pop gdpPercap
187 6 58 2571 3312 3313

• visually inspecting those, the main difference looks to be the
number of years in each dataset

• starting with our gapminder_unfiltered dataset let’s work-
out which years have data

gapminder_unfiltered

• we can join our gapminder data on with a left join to get
where there’s matches

gapminder_unfiltered %>%
left_join(gapminder)

country continent.x year lifeExp.x pop.x gdpPercap.x
Afghanistan Asia 1952 28.801 8425333 779.4453
Afghanistan Asia 1957 30.332 9240934 820.8530

• we can group our data by year to be able to produce sum-
maries

14.2. WORKING WITH THE GAPMINDER DATA 137

gapminder_unfiltered %>%
left_join(gapminder) %>%
group_by(year)

• we can summarise per year how many records there are in
the unfiltered dataset (all rows) and how many there are in
the filtered dataset (no NAs in the *.y columns)

gapminder_unfiltered %>%
left_join(gapminder) %>%
group_by(year) %>%
summarise(unfiltered=n(),

filtered= sum(!is.na(pop.y)))

year unfiltered filtered
1950 39 0
1951 24 0
1952 144 142
1953 24 0
1954 24 0

It looks like there are a number of years with much smaller amounts
of data and have been excluded as a consequence.

14.2.2 Is there data for every key year for all
countries?

We noticed there are still some records for key years that didn’t
make it into the filtered dataset – we should check that at least the
data for the countries that did make it is available for every year.

• we get our gapminder data
• we group by country and then we can write a summary that

says how many records they have and we can also write a
check to ensure there are no duplicates

gapminder %>%
group_by(country) %>%
summarise(years=n(), years_check= n_distinct(year))

138 CHAPTER 14. PUTTING IT ALL TOGETHER

country years years_check
Afghanistan 12 12
Albania 12 12

• we can now write some checks to verify that every country has
the same number of records and that there aren’t duplicates

gapminder %>%
group_by(country) %>%
summarise(years=n(), years_check= n_distinct(year)) %>%
filter(years != max(years) | years != years_check) %>%
nrow()

[1] 0

14.2.3 Provide an indexed GDP based on the
earliest data

Indexing values means expressing it as the proportion of a baseline
value. As a result, we need to get the earliest data and use that
to divide each record’s GDP against that value where the country
matches.

• we start with our gapminder data
• we need to filter to the earliest year and keep these as our

base values

gapminder %>%
filter(year==min(year)) %>%
select(year, base=gdpPercap) ->
index_vals

year base
1952 779.4453
1952 1601.0561

• we can now add this base value as a new column by joining
the index_vals data onto gapminder

14.3. EXERCISES 139

gapminder %>%
inner_join(index_vals)

Joining, by = "year"

country year lifeExp pop gdpPercap base
Afghanistan 1952 28.801 8425333 779.4453 779.4453
Afghanistan 1952 28.801 8425333 779.4453 1601.0561

• we can now calculate the indexed GDP

gapminder %>%
inner_join(index_vals) %>%
mutate(indexedgdp=gdpPercap/base)

Joining, by = "year"

country year gdpPercap base indexedgdp
Afghanistan 1952 779.4453 779.4453 1.000000
Afghanistan 1952 779.4453 1601.0561 0.486832

14.3 Exercises

It’s now your turn to practice going from question to answer! Good
luck.

1. Which carrier had the largest percentage of flights that de-
parted late in the flights data?

2. Show flights by carrier to different destinations
3. What is the average flight speed (distance travelled divided

by time spent in the air) for each carrier?
4. Does the average flight speed vary by distance to the desti-

nation?
5. Show the average life expectancy by continent over time

based on the gapminder data
• Account for population by country

6. What is the actual change in population for countries over
time in the gapminder data

Chapter 15

Conclusion

This book covered some of the fundamentals of data manipulation,
from importing data, to working with strings and dates, to slicing
and dicing tabular data like a pro. These are fundamental skills
that you need to nail. There’s some other data structures and
formats that I haven’t covered that are fairly important. Most of
these will get dedicated treatment in later books.

15.1 The tidyverse

We used the tidyverse extensively in this book. Running
library(tidyverse) loads packages for importing data, ma-
nipulating data, and writing data pipelines. These are core
requirements to most analytical projects you will need to do. If
you need to load up individual packages, the vital ones are:

• dplyr for core data manipulation
• tidyr for pivoting and unpivoting data
• stringr for text manipulation
• forcats for working with factors
• readr for reading flat files
• readxl for reading Excel data
• magrittr gives you the data pipeline operator (%>%) although

many packages will load this up for you

A lot of these packages have some nifty cheat sheets produced by

141

142 CHAPTER 15. CONCLUSION

RStudio on rstudio.com1. These are really handy to keep printed
out and to hand.2

15.2 Stepping through the workflow

Your typical steps through basic data analysis will involve

• importing data using functions like read_csv() and
read_excel()

– use the map_df() function as a wrapper around these
read functions to read and combine data from multiple
sources

– use the bind_rows() function to combine data from mul-
tiple datasets in memory

• using spread() and gather() to reshape data as required
• cleaning data using filter() and mutate() to remove rows

and change or create columns
– use variants ending with all, if, and at to avoid repet-

itive typing
• combining multiple datasets of related information using the

various join functions
• analysing data by group using group_by() and add within

group aggregates using mutate() to the data or condense
data by using summarise()

– use variants ending with all, if, and at to avoid repet-
itive typing

The next steps are building plots (covered in book 3), reports (prob-
ably book 4), working with different data stores (probably book 5),
and models (later books).

15.3 Thank you

Thank you all for reading the book and I hope it’s been useful to
you! Please leave a review on Amazon to help others decide if this
book is right for them.

1https://www.rstudio.com/resources/cheatsheets/
2As well as this book, obviously!

https://www.rstudio.com/resources/cheatsheets/

Chapter 16

Answers

16.1 Piping

• Write a pipeline that samples from the vector LETTERS
200 times and stores the result in a vector called
lots_of_LETTERS

LETTERS %>%
sample(200, replace = TRUE) ->
lots_of_LETTERS

• Write a pipeline that provides upper-cased versions of the
column names of the dataset mtcars

mtcars %>%
colnames() %>%
toupper()

[1] "MPG" "CYL" "DISP" "HP" "DRAT" "WT" "QSEC" "VS"

143

144 CHAPTER 16. ANSWERS

16.2 Filtering columns

• Write a select() that gets from the movies data (from
ggplot2movies) the columns title through to votes, and
Action through to Short

movies %>%
select(title:votes, Action:Short)

title year length budget rating
$ 1971 121 NA 6.4
$1000 a Touchdown 1939 71 NA 6.0
$21 a Day Once a Month 1941 7 NA 8.2
$40,000 1996 70 NA 8.2
$50,000 Climax Show, The 1975 71 NA 3.4
$pent 2000 91 NA 4.3

• Write a query that brings back the movies dataset without
any column that begins with r or m

movies %>%
select(starts_with("r"),starts_with("m"))

rating r1 r2 r3 r4
6.4 4.5 4.5 4.5 4.5
6.0 0.0 14.5 4.5 24.5
8.2 0.0 0.0 0.0 0.0
8.2 14.5 0.0 0.0 0.0
3.4 24.5 4.5 0.0 14.5
4.3 4.5 4.5 4.5 14.5

• [ADVANCED] Write a query that returns columns that have
a high degree of missing data (more than 25% of rows are
NA) from the movies dataset

movies %>%
select_if(~sum(is.na(.))/length(.)>.25)

16.3. FILTERING ROWS 145

budget
NA
NA
NA
NA
NA
NA

16.3 Filtering rows

• Write a filter that gets all action movies the movies dataset
from the ggplot2movies package

movies %>%
filter(Action==1)

title year length budget rating
$windle 2002 93 NA 5.3
’A’ gai waak 1983 106 NA 7.1
’A’ gai waak juk jaap 1987 101 NA 7.2
’Crocodile’ Dundee II 1988 110 NA 5.0
’Gator Bait 1974 88 NA 3.5
’Sheba, Baby’ 1975 90 NA 5.5

• Write a filter that removes films lasting more than 6 hours
from the movies dataset

movies %>%
filter(length<6*60)

title year length budget rating
$ 1971 121 NA 6.4
$1000 a Touchdown 1939 71 NA 6.0
$21 a Day Once a Month 1941 7 NA 8.2
$40,000 1996 70 NA 8.2
$50,000 Climax Show, The 1975 71 NA 3.4
$pent 2000 91 NA 4.3

146 CHAPTER 16. ANSWERS

• [ADVANCED] Write a filter that checks to see if any of the
films don’t have any genres flagged at all

movies %>%
filter_at(vars(Action:Short), all_vars(.==0))

title year length budget rating
$50,000 Climax Show, The 1975 71 NA 3.4
’49-’17 1917 61 NA 6.0
’94 du bi dao zhi qing 1994 96 NA 5.9
’Gator Bait II: Cajun Justice 1988 95 NA 3.1
’Hukkunud Alpinisti’ hotell 1979 80 NA 7.7
’I Do...’ 1989 86 NA 6.2

16.4 Working with names

• Output the movies dataset with the column budget changed
to budget_if_known

movies %>%
rename(budget_if_known=budget)

title year length budget_if_known rating
$ 1971 121 NA 6.4
$1000 a Touchdown 1939 71 NA 6.0
$21 a Day Once a Month 1941 7 NA 8.2
$40,000 1996 70 NA 8.2
$50,000 Climax Show, The 1975 71 NA 3.4
$pent 2000 91 NA 4.3

• [ADVANCED] Write a query that returns from the movies
dataset columns that have a high degree of missing data
(more than 25% of rows are NA) and upper case all the output
column names

movies %>%
select_if(~sum(is.na(.))/length(.)>.25, str_to_upper)

16.5. RE-ARRANGING YOUR DATA 147

BUDGET
NA
NA
NA
NA
NA
NA

16.5 Re-arranging your data

• Sort the movies data by title in descending order

movies %>%
arrange(desc(title))

title year length budget rating
Zzyzx 2005 90 1e+06 8.0
Zzim 1998 101 NA 4.5
Zzikhimyeon jukneunda 2000 94 NA 4.7
Zywot Mateusza 1967 80 NA 5.4
Zyosyuu syukeininn Maria 1995 75 NA 3.7
Zyklus von Kleinigkeiten 1999 86 NA 6.0

• [ADVANCED] Sort the movies data by columns containing
only two unique values

movies %>%
arrange_if(~n_distinct(.)==2)

title year length budget rating
$50,000 Climax Show, The 1975 71 NA 3.4
’49-’17 1917 61 NA 6.0
’94 du bi dao zhi qing 1994 96 NA 5.9
’Gator Bait II: Cajun Justice 1988 95 NA 3.1
’Hukkunud Alpinisti’ hotell 1979 80 NA 7.7
’I Do...’ 1989 86 NA 6.2

148 CHAPTER 16. ANSWERS

16.6 Changing your data

• Create an irisImperial dataset with the numeric measure-
ments converted to inches (divide by 2.5), and the Species
upper-cased.

iris %>%
mutate(Species=toupper(Species),

Sepal.Width=Sepal.Width/2.5,
Sepal.Length=Sepal.Length/2.5,
Petal.Width=Petal.Width/2.5,
Petal.Length=Petal.Length/2.5)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
2.04 1.40 0.56 0.08 SETOSA
1.96 1.20 0.56 0.08 SETOSA
1.88 1.28 0.52 0.08 SETOSA
1.84 1.24 0.60 0.08 SETOSA
2.00 1.44 0.56 0.08 SETOSA
2.16 1.56 0.68 0.16 SETOSA

• Add a column to movies that says how much the length dif-
fers from the median

movies %>%
mutate(median_diff=length-median(length))

title year length budget median_diff
$ 1971 121 NA 31
$1000 a Touchdown 1939 71 NA -19
$21 a Day Once a Month 1941 7 NA -83
$40,000 1996 70 NA -20
$50,000 Climax Show, The 1975 71 NA -19
$pent 2000 91 NA 1

• [ADVANCED] Redo your irisImperial code using the
mutate_if() function to make the conversion more succinct.

16.7. WORKING WITH DATES 149

iris %>%
mutate(Species=toupper(Species))%>%
mutate_if(is_numeric, ~./2.5)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
2.04 1.40 0.56 0.08 SETOSA
1.96 1.20 0.56 0.08 SETOSA
1.88 1.28 0.52 0.08 SETOSA
1.84 1.24 0.60 0.08 SETOSA
2.00 1.44 0.56 0.08 SETOSA
2.16 1.56 0.68 0.16 SETOSA

16.7 Working with dates

• Get the last day of the previous month for these dates:
c("2015, April 29th","2017/01/07","17/08/12")

c("2015, April 29th","2017/01/07","17/08/12") %>%
ymd() %>%
floor_date(.,unit = "month") - days(1)

[1] "2015-03-31" "2016-12-31" "2017-07-31"

• Dates are hard. Try to get a year and a day from the 29th
February 2016 using lubridate – what do you think the right
answer should be 1st March 2017 or 2nd March 2017?

dmy("29th February 2016") + dyears(1) + days(1)

[1] "2017-03-01"

• Generate a sequence of the first day of the month for the next
36 months.

ceiling_date(Sys.Date(),unit = "month") + months(0:35)

[1] "2018-01-01" "2018-02-01" "2018-03-01" "2018-04-01"

150 CHAPTER 16. ANSWERS

16.8 Working with strings

• Store “the quick brown fox jumps over the lazy dog”

font_string<-"the quick brown fox jumps over the lazy dog"

• Upper case the string

font_string %>%
str_to_upper()

[1] "THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG"

• Split the sentence into words and count the number of letters
in each word

font_string %>%
str_split(boundary("word")) %>%
map(str_length)

[[1]]
[1] 3 5 5 3 5 4 3 4 3

• Count the records in the gss_cat dataset by survey year

gss_cat$year %>%
factor() %>%
fct_count()

A tibble: 8 x 2
f n
<fctr> <int>
1 2000 2817
2 2002 2765
3 2004 2812
4 2006 4510
5 2008 2023
6 2010 2044
7 2012 1974
8 2014 2538

16.9. SUMMARISING DATA 151

• Revise gss_cat such that there are only three levels of mari-
tal status

gss_cat$marital<-fct_lump(gss_cat$marital,2)

• Race, partyid, religion, and denomination are sensitive values,
anonymise them

gss_cat$race<-fct_anon(gss_cat$race)
gss_cat$relig<-fct_anon(gss_cat$relig)
gss_cat$denom<-fct_anon(gss_cat$denom)
gss_cat$partyid<-fct_anon(gss_cat$partyid)

16.9 Summarising data

• Find the min and max values for length in movies

movies %>%
summarise(min=min(length), max=max(length))

min max
1 5220

• In a pipeline, find out what proportion of films are Action
movies, Action Comedies, Comedies, and neither Action or
Comedy

movies %>%
group_by(Action, Comedy) %>%
summarise(n=n()) %>%
mutate(prop=n/sum(n))

Action Comedy n prop
0 0 37605 0.6951017
0 1 16495 0.3048983
1 0 3912 0.8344710
1 1 776 0.1655290

152 CHAPTER 16. ANSWERS

• [ADVANCED] Get the range for each numeric variable in
movies. Hint: Range outputs two values so you need to
make a custom function that will concatenate the outputs of
range

movies %>%
summarise_if(is.numeric,

~paste(range(., na.rm=TRUE),
collapse = "-"))

year length budget rating votes
1893-2005 1-5220 0-200000000 1-10 5-157608

16.10 Combining datasets

• Create a summary of the movies data by year that says how
many movies were released each year and the average dura-
tion

movies %>%
group_by(year) %>%
summarise(n=n(),avg_length=mean(length)) ->
movies_sum

• Add this summary data to the movies table

movies %>%
inner_join(movies_sum)

Joining, by = "year"

title year length n avg_length
$ 1971 121 646 92.97214
$1000 a Touchdown 1939 71 484 64.22107
$21 a Day Once a Month 1941 7 521 66.30326
$40,000 1996 70 1390 85.92806
$50,000 Climax Show, The 1975 71 619 93.68174
$pent 2000 91 2048 79.16943

16.10. COMBINING DATASETS 153

• Create a subset of the movies table that has any film over 300
minutes long, use a join to get everything but those records

movies %>%
filter(length>=300) ->
long_movies

movies %>%
anti_join(long_movies)

title year length budget rating
$ 1971 121 NA 6.4
$1000 a Touchdown 1939 71 NA 6.0
$21 a Day Once a Month 1941 7 NA 8.2
$40,000 1996 70 NA 8.2
$50,000 Climax Show, The 1975 71 NA 3.4
$pent 2000 91 NA 4.3

• Use sample_n() to take a thousand records from movies,
write the data to CSV with a file name that contains the
current time. Rerun the code multiple times to generate
some CSVs. Read any CSVs into a combined dataset called
moviessample.

movies %>%
sample_n(1000) %>%
readr::write_csv(.,

paste0("movies",
format(now(), "%Y%m%d%H%M%S"),
".csv"))

list.files(pattern = "movies") %>%
map_df(read_csv) ->
moviessample

154 CHAPTER 16. ANSWERS

16.11 Reshaping data

• Unpivot the who dataset, keeping everything from country to
year on each row

– Use string manipulation to change newrel to new_rel
in what used to be column names

– Use seperate() to split out the measure components
as much as possible

who %>%
gather("key","value",-(country:year)) %>%
mutate(key=str_replace(key,"newrel","new_rel")) %>%
separate(key, c("type","measure","genderage")) %>%
separate(genderage,c("gender","age"),sep=1)

country iso2 iso3 year type
Afghanistan AF AFG 1980 new
Afghanistan AF AFG 1981 new
Afghanistan AF AFG 1982 new
Afghanistan AF AFG 1983 new
Afghanistan AF AFG 1984 new
Afghanistan AF AFG 1985 new

• Make a table showing country population as a percentage of
global population by year using the population dataset

– Calculate the percentage of the worlds population by
year for each country

– Format the percentage
– Excluding columns as required, pivot the data

population %>%
group_by(year) %>%
mutate(prop=scales::percent(
population / sum(as.numeric(population),

na.rm=TRUE))) %>%
select(year, country, prop) %>%
spread(year, prop)

16.12. GETTING DATA OUT OF R 155

country 1995 1996 1997 1998
Afghanistan 0.3% 0.3% 0.3% 0.3%
Albania 0.1% 0.1% 0.1% 0.1%
Algeria 0.5% 0.5% 0.5% 0.5%
American Samoa 0.0% 0.0% 0.0% 0.0%
Andorra 0.0% 0.0% 0.0% 0.0%
Angola 0.2% 0.2% 0.2% 0.2%

16.12 Getting data out of R

• Install and load the package ggplot2movies

if(!require("ggplot2movies")) install.packages("ggplot2movies")
library(ggplot2movies)

• Write the dataset movies to CSV

readr::write_csv(movies, "movies.csv")

• Write the dataset movies to a spreadsheet

writexl::write_xlsx(movies, "movies.xlsx")

• Read the data from the spreadsheet into an object called
movies2

movies2<-readxl::read_excel("movies.xlsx")

• Use sample_n() to take a thousand records from movies,
write the data to CSV with a file name that contains the
current time.

movies %>%
sample_n(1000) %>%
readr::write_csv(., paste0("movies",

format(now(), "%Y%m%d%H%M%S"),
".csv"))

156 CHAPTER 16. ANSWERS

16.13 Putting it all together

• Which carrier had the largest percentage of flights that de-
parted late in the flights data?

flights %>%
group_by(carrier) %>%
summarise(late_flights = sum(dep_delay>5, na.rm = TRUE),

flights = n(),
late_flights_prop= late_flights/flights) %>%

slice(which.max(late_flights_prop))

carrier late_flights flights late_flights_prop
F9 278 685 0.4058394

• Show flights by carrier to different destinations

flights %>%
group_by(carrier, dest) %>%
summarise(flights = n()) %>%
spread(carrier, flights, fill = "")

dest 9E AA AS B6 DL
ABQ 254
ACK 265
ALB
ANC
ATL 59 10571
AUS 2 365 747 357

• What is the average flight speed (distance travelled divided
by time spent in the air) for each carrier?

flights %>%
group_by(carrier) %>%
summarise(avg_speed = sum(distance, na.rm = TRUE) /

sum(air_time, na.rm=TRUE)) %>%
arrange(desc(avg_speed))

16.13. PUTTING IT ALL TOGETHER 157

carrier avg_speed
HA 7.997269
VX 7.483497
AS 7.428769
UA 7.330243
AA 7.271611
DL 7.188905

• Does the average flight speed vary by distance to the desti-
nation?

flights %>%
group_by(dest) %>%
summarise(avg_speed=sum(distance, na.rm = TRUE) /

sum(air_time, na.rm=TRUE)) %>%
filter(avg_speed!=Inf) %>%
mutate(mean=mean(avg_speed), diff=avg_speed-mean) %>%
arrange(desc(avg_speed))

dest avg_speed mean diff
JAC 8.444084 6.773326 1.670758
BQN 8.175209 6.773326 1.401883
ANC 8.157337 6.773326 1.384011
PSE 8.152115 6.773326 1.378789
SJU 8.137829 6.773326 1.364503
HNL 8.122526 6.773326 1.349200

• Show the average life expectancy by continent over time
based on the gapminder data

– Account for population by country

gapminder %>%
mutate(sum_lifeExp=lifeExp*pop) %>%
group_by(continent,year) %>%
summarise(avg_lifeExp= round(
sum(as.numeric(sum_lifeExp), na.rm=TRUE)/
sum(as.numeric(pop), na.rm=TRUE),2)) %>%

spread(continent, avg_lifeExp)

158 CHAPTER 16. ANSWERS

year Africa Americas Asia Europe
1952 38.80 60.24 42.94 64.91
1957 40.94 62.02 47.29 66.89
1962 43.10 63.44 46.57 68.46
1967 45.18 64.51 53.88 69.55
1972 47.21 65.70 57.52 70.47
1977 49.21 67.61 59.56 71.54

• What is the actual change in population for countries over
time in the gapminder data

gapminder %>%
group_by(country) %>%
arrange(year) %>%
mutate(diff=pop-lag(pop))

country continent year lifeExp diff
Afghanistan Asia 1952 28.801 NA
Afghanistan Asia 1957 30.332 815601
Afghanistan Asia 1962 31.997 1026149
Afghanistan Asia 1967 34.020 1270883
Albania Europe 1952 55.230 NA
Albania Europe 1957 59.280 193808

	About this book
	Feedback

	Conventions
	Prequisites
	What you need to already know
	System requirements

	About the author
	Steph Locke
	Locke Data

	Acknowledgements
	tidyverse
	Getting data
	Rstudio import wizard
	CSVs
	Spreadsheets
	Advanced reading of data
	Databases
	Summary

	Data pipelines
	About piping in R
	Simple usage
	Assigning results
	Jumbled functions
	Summary
	Exercises

	Filtering columns
	Basic selections
	Name-based selection
	Content based selection
	Advanced conditional selection
	Summary
	Exercises

	Filtering rows
	Row-position selection
	Conditional selection
	Advanced row filtering
	Summary
	Exercises

	Working with names
	Working with column names
	Advanced renaming columns
	Working with row names
	Summary
	Exercises

	Re-arranging your data
	Sorting rows
	Advanced row sorting
	Reordering columns
	Summary
	Exercises

	Changing your data
	Useful functions
	Advanced data changes
	Summary
	Exercises

	Working with dates and times
	Date conversions
	Date components
	Date arithmetic
	Date formatting
	Common tasks
	Summary
	Exercises

	Working with text
	Strings
	Factors
	Summary
	Exercises

	Summarising data
	Producing summaries
	Aggregate functions
	Advanced aggregations
	Summarising by groups
	Advanced grouping
	Summary
	Exercises

	Combining datasets
	Joining two tables to make a wider table
	Joining two tables to make a longer table
	Summary
	Exercises

	Reshaping data
	Unpivoting data
	Pivoting data
	String splitting revisited
	Summary
	Exercise

	Getting data out of R
	CSVs
	Spreadsheets
	Databases
	Summary
	Exercises

	Putting it all together
	Working with the flights data
	Working with the gapminder data
	Exercises

	Conclusion
	The tidyverse
	Stepping through the workflow
	Thank you

	Answers
	Piping
	Filtering columns
	Filtering rows
	Working with names
	Re-arranging your data
	Changing your data
	Working with dates
	Working with strings
	Summarising data
	Combining datasets
	Reshaping data
	Getting data out of R
	Putting it all together

